{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"设计出PBN内衬的逐层减压石英生长安瓿,采用改进的垂直布里奇曼法,获得了完整无开裂的CdSiP2晶体,尺寸达φ15 mm × 65 mm.采用高分辨X射线衍射、扫描电子显微镜和X射线能谱仪对生长的晶体进行测试表明,生长晶体化学成分非常接近CdSiP2的理论化学配比,结晶性良好.运用红外分光光度计以及红外显微镜对厚度2mm的CdSiP2晶片进行了红外光学性能测试,结果表明,在2~5 μm范围内的红外透过率在53%以上,晶片的红外透过率均匀性接近90%.对CdSiP2晶体a轴方向与c轴方向的热膨胀系数αa和αc分别进行了测定,在温度620K时,a轴方向的热膨胀系数αa高达4×10-6 K-1,几乎为αc的三倍.计算得到Cd-P键rCd-P的热膨胀系数为17×10-6 K-1,比Si-P键rSi-P大得多,采用电子结构理论分析了CdSiP2晶体各向异性热膨胀机理.","authors":[{"authorName":"杨辉","id":"7eda327b-c3ed-4b3b-ac24-a49bdef41582","originalAuthorName":"杨辉"},{"authorName":"朱世富","id":"7a8431b5-f05a-4a2c-a356-24e779590e18","originalAuthorName":"朱世富"},{"authorName":"赵北君","id":"190b1879-45a8-4711-ac8a-62c3acc19e4c","originalAuthorName":"赵北君"},{"authorName":"何知宇","id":"51b5bb56-baa8-49ee-a639-a23e30e5e1f3","originalAuthorName":"何知宇"},{"authorName":"陈宝军","id":"789a9d81-9708-4adb-a182-881b1997aec2","originalAuthorName":"陈宝军"},{"authorName":"孙宁","id":"ed3db74f-b10c-4478-b4ff-1d56fd458f38","originalAuthorName":"孙宁"},{"authorName":"吴敬尧","id":"de97a41d-39ed-40e0-9f05-5ab90f8fbbc8","originalAuthorName":"吴敬尧"},{"authorName":"","id":"ccb06650-3e1d-4747-95d3-ca443f23b46f","originalAuthorName":"林莉"}],"doi":"","fpage":"2619","id":"395c4168-b5aa-43c6-b396-9710137b6ffc","issue":"10","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"9b8c92b4-58ba-4508-817e-2d6067aad1f0","keyword":"CdSiP2","originalKeyword":"CdSiP2"},{"id":"6249fba8-5cf1-492c-b419-ad1254f07c31","keyword":"晶体生长","originalKeyword":"晶体生长"},{"id":"85b56c6d-4c1d-4873-b79c-cd2731f74edf","keyword":"布里奇曼法","originalKeyword":"布里奇曼法"},{"id":"ed4e01db-2e40-4dd9-b279-e040bb87cdce","keyword":"热膨胀","originalKeyword":"热膨胀"}],"language":"zh","publisherId":"rgjtxb98201510001","title":"CdSiP2晶体的生长与热膨胀性质研究","volume":"44","year":"2015"},{"abstractinfo":"采用改进的布里奇曼法生长出CdSiP2单晶体,运用X射线能谱仪、傅里叶变换红外分光光度计以及红外显微镜等对在不同气氛中退火前后的CdSiP2晶体进行了组分元素、红外吸收系数以及红外透过均匀性测试,根据红外显微镜Mapping图像的标准差值评判了晶体的红外透过均匀性.研究结果表明,经真空、CdSiP2粉末包裹、P/Cd(原子比为2:1)、Cd气氛等退火后,晶体组分元素的化学计量比、红外吸收系数和红外光学均匀性都得到了不同程度的改善,其中在1.29~2.00 μum,经CdSiP2粉末包裹退火后的晶体吸收系数改善显著,在1.92~1.98 μm波段的红外透过均匀性提高了14.06%;而在Cd气氛下退火后晶体的吸收系数在2.00~6.50 μm波段降低最为明显,在2.70~2.78 μm波段红外透过均匀性提高了17.43%.分析讨论了在上述波段中引起晶体红外吸收和红外透过不均匀性的主要因素,研究出较为有效的CdSiP2晶体退火工艺.","authors":[{"authorName":"","id":"f37cc725-3372-4e48-9578-62a83d3d1af8","originalAuthorName":"林莉"},{"authorName":"赵北君","id":"248e0630-cf9b-4445-b42d-4eadb3d86301","originalAuthorName":"赵北君"},{"authorName":"朱世富","id":"9008a2a3-3cd4-40a0-aa05-6a46cc30f0de","originalAuthorName":"朱世富"},{"authorName":"何知宇","id":"6f9fc9b8-ce63-42c3-a2ee-8feb8760920c","originalAuthorName":"何知宇"},{"authorName":"陈宝军","id":"0ffffec7-4244-4a5a-bade-30f7ffa971bc","originalAuthorName":"陈宝军"},{"authorName":"孙宁","id":"8e0864ce-c6c9-497b-a47a-0ceac24c952e","originalAuthorName":"孙宁"},{"authorName":"黄巍","id":"314e9c95-7073-46ab-b0a6-b362ca7006d6","originalAuthorName":"黄巍"},{"authorName":"杨登辉","id":"331c2bdf-5e6c-4f5f-8cf4-02bc7f65f9ec","originalAuthorName":"杨登辉"},{"authorName":"钟义凯","id":"96feca76-f725-4a52-b8cb-9d3fd6c74806","originalAuthorName":"钟义凯"}],"doi":"","fpage":"2723","id":"49d35eea-4af2-4535-89fd-a203c0cef938","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"94428752-3fa6-4da4-b616-b35eb2ecb3d5","keyword":"CdSiP2晶体","originalKeyword":"CdSiP2晶体"},{"id":"06b69143-e5d7-4c2f-9477-b1a454651d20","keyword":"退火热处理","originalKeyword":"退火热处理"},{"id":"5134d17f-0716-4559-bac0-0608df3c8174","keyword":"红外吸收系数","originalKeyword":"红外吸收系数"},{"id":"ef441042-a1f4-49c3-8950-55129b6ee99c","keyword":"红外透射Mapping图像","originalKeyword":"红外透射Mapping图像"},{"id":"18790640-c4cf-4b6e-b956-c4092a66295b","keyword":"红外透过均匀性","originalKeyword":"红外透过均匀性"}],"language":"zh","publisherId":"xyjsclygc201610045","title":"CdSiP2晶体退火及对红外光学性能的影响","volume":"45","year":"2016"},{"abstractinfo":"针对薄层材料超声测厚过程中回波信号混叠、超声纵波声速未知导致薄层厚度无法测量的问题,提出一种基于声压反射系数幅度谱(Ultrasonic Reflection Coefficient Amplitude Spectrum ,URCAS)匹配分析技术同时测量薄层厚度和超声纵波声速的方法。采用相关系数法对薄层试样实测声压反射系数幅度谱和理论声压反射系数幅度谱在超声检测有效频带范围内逐一进行匹配分析,通过反演计算得到相关系数最大值点对应的超声检测参数,最终实现薄层厚度和超声纵波声速的同时表征。利用该方法对铝合金基体上的雷达吸波涂层(Radar Absorbing Coatings ,RAC)进行实验测试及信号分析。结果表明:该方法可以有效实现混叠信号中超声特征参量的提取,反演得到吸波涂层厚度与千分尺测量厚度间相对误差为2.53%~3.72%、纵波声速测量相对误差为2.51%~3.75%。","authors":[{"authorName":"张伟","id":"3d8d0208-1034-4a9d-b6dd-cc7f29cfdb27","originalAuthorName":"张伟"},{"authorName":"马志远","id":"e6439fa1-28f8-471d-9fd7-69684dfd0453","originalAuthorName":"马志远"},{"authorName":"赫丽华","id":"e130ab62-e395-4ba0-8f70-a72c0da8e943","originalAuthorName":"赫丽华"},{"authorName":"高剑英","id":"104dde15-33aa-4c84-918e-36aa030d1844","originalAuthorName":"高剑英"},{"authorName":"罗文","id":"cb46cfe5-7e2c-40ed-a372-7c99676a0824","originalAuthorName":"罗文"},{"authorName":"","id":"febe1a50-7b70-48c5-8023-e93a73306ca7","originalAuthorName":"林莉"},{"authorName":"雷明凯","id":"a94de879-e6b6-4e28-ba8a-75a8a0220768","originalAuthorName":"雷明凯"}],"doi":"10.11868/j.issn.1001-4381.2016.10.011","fpage":"74","id":"fbbdbca7-067e-48cb-bb6a-6b18880a995c","issue":"10","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"77940a73-2ad7-49a1-afd2-4c7fbf53aa34","keyword":"薄层材料","originalKeyword":"薄层材料"},{"id":"1bc4a132-1b57-48e5-8e3d-f7bb2f2fa680","keyword":"声压反射系数幅度谱","originalKeyword":"声压反射系数幅度谱"},{"id":"e50e9853-a0dc-4069-9080-6398ad0ea998","keyword":"相关系数法","originalKeyword":"相关系数法"},{"id":"cea3b22e-fbce-498c-b7bc-dad660f3dd64","keyword":"厚度","originalKeyword":"厚度"},{"id":"e72893e4-2b56-4def-b4cb-0711addae364","keyword":"纵波声速","originalKeyword":"纵波声速"},{"id":"2f2f3d0b-4f9d-4fa6-89c6-a731157df088","keyword":"反演","originalKeyword":"反演"}],"language":"zh","publisherId":"clgc201610011","title":"基于声压反射系数幅度谱匹配分析的薄层厚度和超声纵波声速双参数反演","volume":"44","year":"2016"},{"abstractinfo":"在二维条件下,对比分析了经典的确定性模型和随机孔隙模型对含孔隙复合材料的物理模拟结果.确定性模型将含孔隙复合材料看做各向同性均匀介质,将孔隙假设为大小相同、离散均匀分布的规则形状;随机孔隙模型依据随机介质理论,采取统计学原理和方法,将孔隙看做是小尺度上的随机扰动,叠加于由基体构成的大尺度背景介质平均特性之上,可以利用空间平稳随机过程加以描述.研究发现,利用随机孔隙模型不但能够得到与真实孔隙几何相似性良好的孔隙形貌,而且基于此模型的超声衰减系数理论预测结果和实验测试结果之间的符合程度大大优于传统的确定性模型.","authors":[{"authorName":"张翔","id":"0ac4a6d4-8252-4807-990a-27253b7dcf8a","originalAuthorName":"张翔"},{"authorName":"","id":"cdc434db-e2e9-498c-a61f-59a590207f77","originalAuthorName":"林莉"},{"authorName":"陈军","id":"8c9c965f-9057-43a9-8157-d2e5b0116492","originalAuthorName":"陈军"},{"authorName":"郭广平","id":"b4232510-b2c7-4a3d-83f5-0470541ef220","originalAuthorName":"郭广平"},{"authorName":"李喜孟","id":"6e135654-e557-42d4-bf2b-48102e52765d","originalAuthorName":"李喜孟"}],"doi":"10.3969/j.issn.1005-5053.2010.6.017","fpage":"93","id":"215aab54-e792-416a-9c80-8ae684f65360","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"39630229-4abd-40ee-95c6-e4f5e95abaee","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"080e0664-c1b6-4ba6-9f7b-b25fba334616","keyword":"孔隙","originalKeyword":"孔隙"},{"id":"f4b58e2a-ee1d-4bb3-8682-3893ae9e2965","keyword":"随机孔隙模型","originalKeyword":"随机孔隙模型"}],"language":"zh","publisherId":"hkclxb201006017","title":"基于确定性和随机性原理的复合材料二维孔隙模型比较","volume":"30","year":"2010"},{"abstractinfo":"针对孔隙率为4.08%和4.20%,孔隙长度尺寸范围分别为6.34 ~ 216.78μm,6.34 ~ 722.25μm的两组碳纤维增强复合材料试样,依据基于随机介质理论和统计学方法建立随机孔隙模型(Random Void Model,RVM)的思想,研究了孔隙建模原理和方法.将孔隙按照长度进行分级,分别建立对应不同尺寸级别的孔隙模型,然后将各个级别的孔隙模型进行叠加.与金相照片对比结果表明,采取分级孔隙建模思想得到的孔隙模拟结果与实际孔隙形貌之间的几何相似度很高,为后续数值计算提供了模型基础.","authors":[{"authorName":"梁向雨","id":"c16a959c-09ab-4c54-a520-4d85da5d2383","originalAuthorName":"梁向雨"},{"authorName":"","id":"a128e87f-af77-40fc-9595-484d4e582a52","originalAuthorName":"林莉"},{"authorName":"陈军","id":"974d3cdc-3eb5-4eb1-9448-ea4cf0b7abf3","originalAuthorName":"陈军"},{"authorName":"丁珊珊","id":"0a11d8fd-7cdf-433b-bf25-3cd169cf91a9","originalAuthorName":"丁珊珊"},{"authorName":"李喜孟","id":"ac9c5ae2-75b2-4c7a-a7fa-9edae1bc3e09","originalAuthorName":"李喜孟"}],"doi":"10.3969/j.issn.1005-5053.2013.3.015","fpage":"81","id":"57311b84-762f-4724-97bf-5d604442d964","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"bc27dfae-8f61-4ffc-9f7f-b06c44e5d5d0","keyword":"碳纤维增强复合材料","originalKeyword":"碳纤维增强复合材料"},{"id":"692957ad-550a-4473-81ba-ebe2974c3b8f","keyword":"孔隙","originalKeyword":"孔隙"},{"id":"f1872a52-ccf6-4c95-9e5d-eccbd0823318","keyword":"随机孔隙模型","originalKeyword":"随机孔隙模型"},{"id":"94357172-cd5c-4101-a4ad-467bdec2e043","keyword":"分级","originalKeyword":"分级"}],"language":"zh","publisherId":"hkclxb201303015","title":"孔隙尺寸离散度大的碳纤维增强复合材料随机孔隙建模方法研究","volume":"33","year":"2013"},{"abstractinfo":"提出一种利用超声波声压反射系数相位谱无损测量热障涂层密度的新方法.采用电子束物理气相沉积技术(electric beam physical vapor deposit, EBPVD)制备平均厚度为150 μm的ZrO2-7%Y2O3(质量分数)热障涂层试样,借助强流脉冲离子束(high-intensity pulsed ion beam, HIPIB)对部分试样进行辐照,改变涂层密度.利用11 MHz宽频超声脉冲波通过垂直入射水浸聚焦方式对涂层进行实验测试.依据涂层密度与声压反射系数相位谱极值之间的关系,结合相位谱实验曲线确定原始热障涂层及经HIPIB辐照后涂层的密度范围分别为4.74~4.92和5.02~5.08 g/cm3.超声法涂层密度测量结果与Archimede法测量结果相符.","authors":[{"authorName":"赵扬","id":"6ac895a6-ed01-49fb-a44d-0d8c39055693","originalAuthorName":"赵扬"},{"authorName":"","id":"e789b2e7-0db5-45bb-8cb8-77273c7d7b3e","originalAuthorName":"林莉"},{"authorName":"李继承","id":"ecabadf1-ad66-4fa6-9ee2-c80cea3a626e","originalAuthorName":"李继承"},{"authorName":"李喜孟","id":"9864602d-d345-46af-865e-5a406f79610c","originalAuthorName":"李喜孟"},{"authorName":"雷明凯","id":"493de372-1b7c-4692-9b93-b5611ccb1085","originalAuthorName":"雷明凯"}],"doi":"","fpage":"255","id":"5a25af3a-341c-4a43-866c-e7f3db7c6235","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"965321bc-c3f3-4195-bbb3-300faddaacd9","keyword":"超声波","originalKeyword":"超声波"},{"id":"91d97f17-da32-40a3-8065-ff4429fbc13a","keyword":"相位谱","originalKeyword":"相位谱"},{"id":"15c90cb3-8fd1-40cc-8775-3e3e32f28b7f","keyword":"密度","originalKeyword":"密度"},{"id":"ef632c61-72f4-4f5c-af54-5340b0b9d21f","keyword":"涂层","originalKeyword":"涂层"},{"id":"0a66edbc-4c82-4db7-b20c-4ae1e81d3333","keyword":"非均匀性","originalKeyword":"非均匀性"}],"language":"zh","publisherId":"xyjsclygc2010z1062","title":"基于超声波声压反射系数相位谱测定热障涂层密度的方法研究","volume":"39","year":"2010"},{"abstractinfo":"通过显微硬度测试、晶间腐蚀(IGC)、交流阻抗实验和透射电镜(TEM)观察,研究了2022和2139合金在T6( 175℃)时效过程中的时效硬化特征、晶间腐蚀行为和微观组织演化.结果表明:2022和2139合金在175℃达到峰值时效的时间分别为20 h和15h.两种合金在峰时效状态下其晶间腐蚀最为敏感;过时效状态下都产生大面积腐蚀坑而未观察到明显的晶间腐蚀.然而欠时效状态下2022合金的抗腐蚀能力优于2139合金的;峰时效状态下2022合金的抗腐蚀能力明显低于2139合金的,这与两种合金在小同的时效状态下析出相的种类、分布和形貌有关.","authors":[{"authorName":"刘瑶琼","id":"b2c90d6f-8169-475f-ad03-0f4608cb9cfd","originalAuthorName":"刘瑶琼"},{"authorName":"郑子樵","id":"6a9529dd-6939-4ebc-ab56-f6f0bffba939","originalAuthorName":"郑子樵"},{"authorName":"李世晨","id":"e5ab7861-179a-465c-9cfd-07ffb696f506","originalAuthorName":"李世晨"},{"authorName":"","id":"d7e6579e-084b-4a49-8986-e81ab9bbeb05","originalAuthorName":"林莉"},{"authorName":"黄裕金","id":"5b2e6657-52d8-437f-87f4-0c71716137e4","originalAuthorName":"黄裕金"}],"doi":"","fpage":"3057","id":"5bf79eff-583c-48ac-8403-431877dda8ba","issue":"12","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"bd02f9b8-7c56-4186-a1ac-2b2b5bcf35f2","keyword":"2022合金","originalKeyword":"2022合金"},{"id":"ded04ad4-d2f6-40ee-bfac-b0a43104abd1","keyword":"2139合金","originalKeyword":"2139合金"},{"id":"39137e3e-c0b2-4b20-bd93-e836fd828819","keyword":"Ag","originalKeyword":"Ag"},{"id":"84962034-3d58-4e7a-81dd-fe2055ef5447","keyword":"晶间腐蚀","originalKeyword":"晶间腐蚀"},{"id":"442a7b83-5e71-4664-9f1c-fec4c5858359","keyword":"交流阻抗","originalKeyword":"交流阻抗"}],"language":"zh","publisherId":"zgysjsxb201112011","title":"高Cu/Mg2×××系铝合金的微观组织与晶间腐蚀行为","volume":"21","year":"2011"},{"abstractinfo":"针对超声干涉法测量薄层厚度的原理,讨论了薄层及与其相邻介质声阻抗匹配分别满足界面声压反射系数|R1|<1/2或|R1|>1/2时回波信号的选取原则,并以薄层声压反射系数谱为依据,分析了上述两种声阻抗匹配条件下谱线分别出现次生极大或极小值的规律,在此基础上提出了薄层厚度测量时谱线极值的选择方法.以航空雷达罩蒙皮GFRP(Glass Fiber Reinforced Plastic)层板外表面复合涂层以及钢基体表面ZrO2陶瓷涂层样品为例进行了薄层厚度测量实验研究及信号分析.研究表明,超声干涉法薄层厚度实验结果与SEM(Scanning Electron Microscope)测量结果相符.由此可知,薄层及与其相邻介质声阻抗匹配判据对于超声干涉法薄层厚度测量具有很强的理论指导意义及工程应用价值.","authors":[{"authorName":"陈秀明","id":"d48a4553-3a6a-4fc2-9e4d-b75d22163968","originalAuthorName":"陈秀明"},{"authorName":"","id":"e37b9521-32a2-4d5a-baac-5d02f87259de","originalAuthorName":"林莉"},{"authorName":"李喜孟","id":"80d3342c-f1bc-4566-9df0-1cc5cc0739f5","originalAuthorName":"李喜孟"},{"authorName":"郭广平","id":"6ee4876e-f9bc-437a-a843-5f78e2ed17d5","originalAuthorName":"郭广平"}],"doi":"10.3969/j.issn.1005-5053.2009.01.018","fpage":"87","id":"62d56fd8-7365-4826-bb47-b8525ae148dd","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"3dd77b2c-9829-4090-95c8-606dc1809e37","keyword":"超声干涉法","originalKeyword":"超声干涉法"},{"id":"2b8a7e2e-67c1-4751-a894-ccf50f5e087d","keyword":"声阻抗匹配","originalKeyword":"声阻抗匹配"},{"id":"aadafdc9-e3f6-4d54-ad08-08ef2aa9399d","keyword":"薄层","originalKeyword":"薄层"},{"id":"377dbc83-fc5e-4a57-8974-7d4a4d218d12","keyword":"厚度测量","originalKeyword":"厚度测量"},{"id":"b4902088-a810-4814-8eb1-01aac23e10ac","keyword":"声压反射系数谱","originalKeyword":"声压反射系数谱"}],"language":"zh","publisherId":"hkclxb200901018","title":"超声干涉法薄层厚度测量声阻抗匹配判据及其应用","volume":"29","year":"2009"},{"abstractinfo":"分析了GCr15SiMn钢不同热处理组织的超声波归-化功率谱.对于正火、退火和高温回火组织,40%~50%脉冲回波能量均集中在8.28125MHz,其中正火和退火组织在中低频段的能量分布相差较小;而对于低温回火组织,超过50%的能量集中在1.09375MHz,中、高频段的能量分布相差较大.分析认为,超声波在不同组织中传播时的散射不同,导致超声波在不同频率上的干涉,可能是造成上述现象的主要原因.利用该方法有望实现显微组织的超声无损区分.","authors":[{"authorName":"","id":"8ee0e757-e7c4-45d7-b815-bbfb51d45c5e","originalAuthorName":"林莉"},{"authorName":"李喜孟","id":"cbf88139-b7ee-45bb-8aab-6bcb6d88d0a5","originalAuthorName":"李喜孟"},{"authorName":"谭家隆","id":"5a95d2a5-c6e4-4dff-a9e5-9a23a340bbfb","originalAuthorName":"谭家隆"},{"authorName":"张俊善","id":"e5594027-5d2f-479a-afcc-a54172ebc879","originalAuthorName":"张俊善"}],"doi":"10.3969/j.issn.1009-6264.2002.04.006","fpage":"21","id":"6be2950a-fff2-4192-b0f2-09e8846ff269","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"f7055696-cfa6-4a66-b46c-7426c9f31b83","keyword":"超声波","originalKeyword":"超声波"},{"id":"2794b922-c746-4621-98a1-22f8dae44987","keyword":"归一化","originalKeyword":"归一化"},{"id":"03eb25f8-bc79-4308-a342-2d856abf52c2","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"5a159900-4684-4be6-a622-67e371ae2a83","keyword":"功率谱","originalKeyword":"功率谱"}],"language":"zh","publisherId":"jsrclxb200204006","title":"超声波功率谱技术无损区分GCr15SiMn钢显微组织的探讨","volume":"23","year":"2002"},{"abstractinfo":"采用超声波检测技术无损区分材料不同组织状态的研究近年来已成为热点,以经控轧控冷工艺生产的30Mn2SiV非调质D级抽油杆用钢为对象,采用水浸线聚焦检测技术,借助超声波频谱分析方法,以相对衰减系数为无损表征参量,研究了棒材多相混合组织状态与相对衰减系数之间的关系.结果表明:该钢相对衰减系数值分布规律从大到小排列为含大量上贝氏体组织、片状珠光体+铁素体组织、珠光体球化组织.","authors":[{"authorName":"杨冰","id":"8e62cc11-aca9-42e0-b3f3-117fa871de19","originalAuthorName":"杨冰"},{"authorName":"","id":"bf67268b-d49b-4db7-8dff-ffc8b0dce0da","originalAuthorName":"林莉"},{"authorName":"赵建强","id":"edcfe3fd-0eb5-4810-8220-be06bcca8911","originalAuthorName":"赵建强"},{"authorName":"李喜孟","id":"ef48ce8e-3096-4875-ad29-ec1a2ebde399","originalAuthorName":"李喜孟"}],"doi":"10.3969/j.issn.1000-3738.2007.03.012","fpage":"40","id":"7224e1e7-1f6f-4ae2-8e7d-a68326d07d68","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"301ace0b-1048-4fe9-8dc9-ffe737bb2d06","keyword":"超声波检测","originalKeyword":"超声波检测"},{"id":"b4d8b295-c0f8-4f6f-a45d-ab93fb779ae7","keyword":"相对衰减系数","originalKeyword":"相对衰减系数"},{"id":"4f7005fe-d8a5-4f04-820b-c071436ea43f","keyword":"30Mn2SiV钢","originalKeyword":"30Mn2SiV钢"},{"id":"222f3ccc-dbfc-448f-9636-a619c0e3f153","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"jxgccl200703012","title":"用相对衰减系数无损表征30Mn2SiV钢的显微组织","volume":"31","year":"2007"}],"totalpage":22,"totalrecord":218}