{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在对几类金属化合物材料的摩擦学研究现状进行综述的基础上,提出了金属化合物摩擦学今后研究工作中可能值得重视的发展方向。","authors":[{"authorName":"薛群基","id":"f431828a-0e95-411d-9c78-f2529f242a70","originalAuthorName":"薛群基"},{"authorName":"杨军","id":"f9690029-6d7f-457b-ac78-51720a287778","originalAuthorName":"杨军"},{"authorName":"喇培清","id":"cea0381e-2373-43fc-805f-394f438ed2b8","originalAuthorName":"喇培清"},{"authorName":"刘维民","id":"53718ce4-b9c6-40df-b46f-d2e97728b0ab","originalAuthorName":"刘维民"}],"doi":"","fpage":"12","id":"0e3f89c4-7d02-4f4f-a40c-e1794c4ce49a","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8343677c-47c9-4412-9084-10a5dd7539d8","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"7114c67c-5a0b-43f4-8aae-584aa7e8fee3","keyword":"摩擦学","originalKeyword":"摩擦学"},{"id":"d69fda29-f167-4835-8b8e-1c3605d9f83a","keyword":"高温材料","originalKeyword":"高温材料"}],"language":"zh","publisherId":"cldb200107005","title":"金属化合物摩擦学研究进展","volume":"16","year":"2001"},{"abstractinfo":"介绍了金属化合物的制备方法,如机械合金化、自蔓延高温合成、放电等离子烧结、热压法、热等静压法和定向凝固技术.总结了金属化合物的发展状况以及它在不同领域的应用研究,并对其发展前景做了展望.分析指出,要扩大金属化合物的应用领域,除了要加强理论研究外,还必须加强制备方法与工艺对材料结构与性能影响的研究,优化工艺参数,从而提高材料的性能.","authors":[{"authorName":"艾桃桃","id":"da6ea239-92e9-446c-94b5-c6509e9fca90","originalAuthorName":"艾桃桃"},{"authorName":"王芬","id":"1818d5ee-4576-4104-8d5e-8b69e7e3ace8","originalAuthorName":"王芬"},{"authorName":"陈平","id":"fc7decbd-c29a-4a88-bbc9-9e94a237fb86","originalAuthorName":"陈平"}],"doi":"10.3969/j.issn.1674-3962.2006.01.002","fpage":"5","id":"b9f2604d-ef6a-4860-872b-1cb225929c2b","issue":"1","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"1a3b0506-2c45-4a37-aeed-4714d96a3c6c","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"7cbfde5b-9321-4827-b9d9-850e00f7aaea","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"2cbadb10-ca48-4bd2-9fe6-7753f03a6631","keyword":"电磁应用","originalKeyword":"电磁应用"},{"id":"51dcc7cc-2e69-4982-905e-ff8941e7fc8e","keyword":"高温应用","originalKeyword":"高温应用"}],"language":"zh","publisherId":"zgcljz200601002","title":"金属化合物的制备方法及应用","volume":"25","year":"2006"},{"abstractinfo":"与普通超合金相比,TiAl基金属化合物以其优异的性能在航空和汽车工业中应用越来越广泛.本文总结了TiAl基合金在微观结构控制、微观组织对性能影响、合金化、熔炼技术、加工技术以及应用等方面的研究进展.","authors":[{"authorName":"孔凡涛","id":"e81781f1-d6ea-4dcb-ad37-5199601c23f4","originalAuthorName":"孔凡涛"},{"authorName":"陈玉勇","id":"ed7d4342-d0f0-4352-aae2-63be4c4e725b","originalAuthorName":"陈玉勇"},{"authorName":"田竞","id":"31bef9a4-af90-4783-af68-9a0b3b65ad9d","originalAuthorName":"田竞"},{"authorName":"陈予勇","id":"4be632ea-7f70-4e5a-9eea-5d2bb1cf1330","originalAuthorName":"陈予勇"}],"doi":"10.3969/j.issn.1005-0299.2003.04.030","fpage":"441","id":"dab8901c-d3e5-485e-ab35-acf71849efdd","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"bc2f430a-f7ac-4486-ac5b-29b75f6301c4","keyword":"TiAl基合金","originalKeyword":"TiAl基合金"},{"id":"eedf3b3c-2697-45c0-919e-e23437d51f50","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"7a444750-00a5-437c-b510-b724c7d65052","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"3173ad15-ac4c-4bea-b49d-77fbff31e634","keyword":"熔炼","originalKeyword":"熔炼"}],"language":"zh","publisherId":"clkxygy200304030","title":"TiAl基金属化合物研究进展","volume":"11","year":"2003"},{"abstractinfo":"研究双相Ni-31Al金属化合物的高温变形行为.结果表明,该合金在950~1075℃温度范围,1.25×10-4~8×10-3s-1应变速率范围内呈超塑性变形.在温度为1000℃、应变速率为5×10-4s-1时,最大延伸率可达281.3%.显微结构分析表明,超塑性变形过程中两相具有很好的协调变形能力,超塑性变形后原始组织拉长、细化.双相Ni-31Al金属化合物超塑性变形机制可能为连续动态回复与再结晶.","authors":[{"authorName":"胡静","id":"305194f9-4984-4ee7-bcb2-ea11800dc72c","originalAuthorName":"胡静"},{"authorName":"林栋樑","id":"d3620905-132d-4393-8ca0-2e2f312d7401","originalAuthorName":"林栋樑"}],"doi":"","fpage":"817","id":"e57d61c5-f6d0-4c55-b59e-e8460752e450","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"ba5fc9ff-ac00-4bd4-8885-c513e39cac8b","keyword":"二元NiAl","originalKeyword":"二元NiAl"},{"id":"1ee4646d-ee24-4178-9c5f-e52292ff0985","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"30c8652b-ffa8-4378-8f61-9bdc40d360cf","keyword":"超塑性","originalKeyword":"超塑性"},{"id":"524233ed-db5b-441c-8c85-b35bbe8053d6","keyword":"连续动态回复与再结晶","originalKeyword":"连续动态回复与再结晶"}],"language":"zh","publisherId":"xyjsclygc201105015","title":"双相NiAl金属化合物超塑性","volume":"40","year":"2011"},{"abstractinfo":"分结构应用和功能应用,介绍了金属化合物在工业中的开发应用概况,强调了其优良性能在替代传统用材上的优势和应用潜力.","authors":[{"authorName":"张澜庭","id":"15184a2e-21a0-4256-ba97-5d71ca132380","originalAuthorName":"张澜庭"},{"authorName":"毛大立","id":"327d1517-567a-4203-b04f-4c3454231af9","originalAuthorName":"毛大立"},{"authorName":"吴建生","id":"41741cea-af47-4028-864d-7e797ca85b93","originalAuthorName":"吴建生"}],"doi":"10.3969/j.issn.1001-7208.1999.02.002","fpage":"11","id":"4350a367-abe5-44e6-9112-a45a82dd18e9","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"d341dcd3-4fb4-4838-b5ab-89b85a6f998a","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"f9f227d1-4426-4753-a159-36be8f717cdc","keyword":"结构材料应用","originalKeyword":"结构材料应用"},{"id":"8b25469f-94d4-4a1c-84a2-a260dacb55b6","keyword":"功能材料应用","originalKeyword":"功能材料应用"}],"language":"zh","publisherId":"shjs199902002","title":"金属化合物在工业中的应用","volume":"21","year":"1999"},{"abstractinfo":"用球磨机分别对Ni-50at.-%Al和Ni-25at.-%Al混合粉末进行机械合金化,并对Ni_3Al预合金粉末进行高能球磨,观察了粉末的金相组织,测定了粉末的硬度、平均直径和晶粒尺寸,并作了XRD相分析结果表明,经3h研磨,Ni-50at.-%Al混合粉末变成NiAl金属化合物,其晶粒直径约5nm;经5h机械球磨,Ni-25at.-%Al混合粉末成为无序的亚稳定Ni固溶体,而Ni_3Al预合金粉末由Ll_2型长程有序金属化合物转变为fcc无序固溶体;球磨更长时间,则形成纳米晶.","authors":[{"authorName":"李谷松","id":"d64b8e68-b4ca-4811-a0f5-52e9cfd93d4c","originalAuthorName":"李谷松"},{"authorName":"丁炳哲","id":"bc799b66-e9a8-4c8e-b0f9-f30ea4919e84","originalAuthorName":"丁炳哲"},{"authorName":"苗卫方","id":"5b99f481-3b91-4179-9190-775407d64aca","originalAuthorName":"苗卫方"},{"authorName":"叶荔蕾","id":"7d7533c3-1355-4b77-8fae-aa59cdf58df9","originalAuthorName":"叶荔蕾"},{"authorName":"郭建亭","id":"dd35b167-bbd3-4121-ba79-6e2901cee335","originalAuthorName":"郭建亭"}],"categoryName":"|","doi":"","fpage":"91","id":"c0f5c301-d55c-489a-9c90-b442aa09da45","issue":"14","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"33682aac-edcb-4461-828a-5a20504d01e3","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"a12b772a-f9ae-49dc-945f-22519c7875c6","keyword":"mechanical alloying","originalKeyword":"mechanical alloying"},{"id":"c0a148b4-11f5-44b8-9fd9-c47412eeed59","keyword":"nanocrystalline structure","originalKeyword":"nanocrystalline structure"},{"id":"54758310-9868-48a1-96d2-1023dbc9f585","keyword":"Ni","originalKeyword":"Ni"},{"id":"93b2667d-1407-44a0-91b7-2bf5535da952","keyword":"Al","originalKeyword":"Al"},{"id":"8dd329e6-ccf5-40cc-9cf2-f0aa72309929","keyword":"Ni_3Al","originalKeyword":"Ni_3Al"},{"id":"e52fa6d6-36d2-4848-945b-befb8b859fcb","keyword":"NiAl","originalKeyword":"NiAl"}],"language":"zh","publisherId":"0412-1961_1994_14_3","title":"用机械合金化方法制备Ni-Al系金属化合物","volume":"30","year":"1994"},{"abstractinfo":"综述了自1988年以来中国科学院高温合金和金属化合物研究组(郭建亭研究组)在高温结构金属化合物NiAl及其合金、Ni3Al及其合金、FeAl和Fe3Al及其合金、TiAl合金以及金属化合物环境脆性方面的主要研究成果:NiAl合金超塑性的发现及其机理研究;稀土元素改善NiAl合金的室温塑性和高温抗氧化性能;NiAl合金的韧脆转变行为及其机理;纳米晶NiAl合金及其复合材料的强韧化;内生颗粒增强NiAl基复合材料及强韧化机制;NiAl合金良好的耐高温摩擦磨损性能及自润滑机理的发现;NiAl中合金元素的作用与JJ-3合金的发展;在国际上首先发现适量Zr可韧化无硼Ni3Al合金;为使Ni3Al强韧化硼含量应加至溶解度附近;FeAl合金反常屈服峰的发现及其机理研究;微量Mg可明显改善FeAl和Fe3Al合金的室温塑性;TiAl-W-Si合金的组织、相转变和界面精细结构;金属化合物的环境脆性实质是氢致脆性;在国际上首先用第一原理方法(DVM)研究了L12型CO3Ti的环境脆性.","authors":[{"authorName":"郭建亭","id":"ea2df662-dc3c-4026-b0cc-e2fd4d2df062","originalAuthorName":"郭建亭"},{"authorName":"周兰章","id":"926bed8e-cd20-46b1-8b3b-219818e8fe60","originalAuthorName":"周兰章"},{"authorName":"李谷松","id":"dae9170d-27bd-4f21-a255-8b7f921a525f","originalAuthorName":"李谷松"}],"doi":"","fpage":"1","id":"8be1b530-b746-42a7-9ca3-c1311d76973e","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"0b096f44-2ee7-4aaa-8781-335b51c73cd3","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"9c797d7b-b5b3-41dd-8c33-7fd9764ae1ae","keyword":"NiAl","originalKeyword":"NiAl"},{"id":"19232aa8-4663-45ac-ade4-b19471d131c0","keyword":"Ni3Al","originalKeyword":"Ni3Al"},{"id":"5f523808-1135-4ff9-bdd2-694b40ec9f77","keyword":"FeAl","originalKeyword":"FeAl"},{"id":"83e7185b-717a-433f-9734-0696b3107911","keyword":"Fe3Al","originalKeyword":"Fe3Al"},{"id":"5801c96f-62e4-428c-a069-da98fc488c2f","keyword":"TiAl合金","originalKeyword":"TiAl合金"},{"id":"22138012-88d0-4b8b-8b73-4937c84ac305","keyword":"环境脆性","originalKeyword":"环境脆性"}],"language":"zh","publisherId":"zgysjsxb201101001","title":"高温结构金属化合物及其强韧化机理","volume":"21","year":"2011"},{"abstractinfo":"金属化合物基叠层复合材料是受自然界中贝壳结构的启发而设计的一种新型高温结构材料.概述了几种不同体系的金属化合物基叠层复合材料的国内外研究现状,发现大多数的金属化合物基叠层复合材料是以金属化合物作为基体,以金属作为夹层来改善金属化合物的脆性问题的.此外还对其制备工艺进行了归纳和评述,并对这类新型叠层复合材料的许多不足和发展趋势提出了初步的想法.","authors":[{"authorName":"郭鑫","id":"adcdd6dc-99da-4bb5-9800-89a3c00aea25","originalAuthorName":"郭鑫"},{"authorName":"马勤","id":"edcf1bfd-dac5-4334-a1d4-21d964b3a2fe","originalAuthorName":"马勤"},{"authorName":"季根顺","id":"aac9fe41-1723-4400-97e8-33b0e013475c","originalAuthorName":"季根顺"},{"authorName":"刘龙江","id":"47b38c0a-2331-4ced-8799-02872c3f3c7d","originalAuthorName":"刘龙江"}],"doi":"","fpage":"66","id":"4bb76fa8-ea50-4b2f-b361-9f1a100b7028","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"150b247d-96e1-4797-9e04-37ec5af33377","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"e5079292-aa8e-41d0-96c8-a285e3573120","keyword":"脆性","originalKeyword":"脆性"},{"id":"cbaf9418-2264-4161-a8a1-d6d5f995a167","keyword":"仿生结构","originalKeyword":"仿生结构"},{"id":"ac0a861d-4840-4592-8cee-73f962b45d2a","keyword":"设计","originalKeyword":"设计"},{"id":"5238f903-ab77-446d-8e6c-a34780a1fe32","keyword":"叠层复合材料","originalKeyword":"叠层复合材料"},{"id":"a10b7776-7734-4ecd-be58-1eb7a863bf28","keyword":"制备技术","originalKeyword":"制备技术"}],"language":"zh","publisherId":"cldb200706017","title":"金属化合物基叠层复合材料研究进展","volume":"21","year":"2007"},{"abstractinfo":"研究了NiAl金属化合物在拉伸条件下的超塑性变形行为和机理.结果表明:用常规精铸工艺和定向凝固工艺制备的NiAl及NiAl基合金都表现出典型的超塑性特征.根据这些合金的显微组织的特点可以分为3类:多相等轴晶组织(NiAl-9Mo,NiAl-25Cr,NiAl-20Fe-Y、Ce,NiAl-30Fe-Y);单相等轴晶组织(NiAl)和柱状晶组织(NiAl-27Fe-3Nb,NiAl-15Cr,NiAl-5Mo-0.5Hf).相应的超塑性变形机理分别是晶界滑动伴随着动态回复,动态回复和再结晶以及晶内的位错滑移.","authors":[{"authorName":"郭建亭","id":"219f06a0-f174-4565-b231-c51aa5eb9117","originalAuthorName":"郭建亭"},{"authorName":"杜兴蒿","id":"7dcaa006-49c4-46e5-8b64-eeb6812a10f1","originalAuthorName":"杜兴蒿"},{"authorName":"齐义辉","id":"9ddf3f3a-8768-4b06-b2d7-4f88f5c86d4d","originalAuthorName":"齐义辉"},{"authorName":"李谷松","id":"e8310bbb-f990-4d03-975c-c2779e1e5e58","originalAuthorName":"李谷松"}],"doi":"","fpage":"582","id":"330ee16e-37e6-4cf0-a9bd-63ce4cd1caa9","issue":"z1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"b4237b17-770f-43db-a63d-ee3ff0cfd54c","keyword":"NiAl","originalKeyword":"NiAl"},{"id":"2082e16f-7e83-4a92-8c5d-3842f0910527","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"94d281bc-21f7-4e14-ac01-c4404e509720","keyword":"超塑性","originalKeyword":"超塑性"}],"language":"zh","publisherId":"gtyjxb2003z1134","title":"NiAl金属化合物超塑性研究","volume":"15","year":"2003"},{"abstractinfo":"研究了Sn-3.5Ag无铅钎料和Cu基体在钎焊和时效过程中界面金属化合物的形成和生长行为.结果表明,在钎焊过程中,由于钎料中存在着Cu的溶解度,界面处生成的金属化合物存在着分解现象.因此Sn-3.5Ag/Cu界面金属化合物层厚度与化合物层的分解有着密切关系.由于吸附作用,金属化合物表面形成了纳米级的Ag3Sn颗粒.当钎焊接头在70,125,170℃时效时,钎焊时形成的扇贝状金属化合物转变为层状.金属化合物的生长厚度与时效时间的平方根呈线性关系,其生长受扩散机制控制.整个金属化合物层和Cu6Sn5层的生长激活能分别为75.16 kJ/mol,58.59kJ/mol.","authors":[{"authorName":"于大全","id":"9383e110-1a59-4e5d-97e7-a6eee4f62d82","originalAuthorName":"于大全"},{"authorName":"段莉蕾","id":"340a551e-c01b-479c-9f21-a25afeb9447e","originalAuthorName":"段莉蕾"},{"authorName":"赵杰","id":"5c257ebf-f831-459c-a1db-ec1bf8101300","originalAuthorName":"赵杰"},{"authorName":"王来","id":"9f113326-b2dc-48b9-a058-48225c101ad8","originalAuthorName":"王来"},{"authorName":"","id":"878f6a59-b8fd-4f8c-bcd3-b7fbb0166f76","originalAuthorName":""}],"doi":"10.3969/j.issn.1005-0299.2005.05.024","fpage":"532","id":"2c27c6b6-f2f5-436d-9f0d-6893db31e943","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"3fcc01e9-7e13-4f4b-b16c-a0ed6ad9edef","keyword":"无铅钎料","originalKeyword":"无铅钎料"},{"id":"41a92668-465d-46e2-b9c9-8c8b1b6e316e","keyword":"Sn-3.5Ag","originalKeyword":"Sn-3.5Ag"},{"id":"7c6d452a-e0ed-4a39-bca4-0a8f27db814d","keyword":"金属化合物","originalKeyword":"金属间化合物"},{"id":"4e17ea63-cdd0-4e68-98f2-11897ee1b045","keyword":"钎焊","originalKeyword":"钎焊"},{"id":"503cfb1e-9178-4dd8-be3f-7296c3d7ad8b","keyword":"时效","originalKeyword":"时效"}],"language":"zh","publisherId":"clkxygy200505024","title":"Sn-3.5Ag/Cu界面金属化合物的生长行为研究","volume":"13","year":"2005"}],"totalpage":5982,"totalrecord":59817}