{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"SiC颗粒在静态空气气氛中经1200℃×10h钝化氧化处理后在表面形成厚约0.6μm,具有晶态的β-方石英结构的致密氧化膜.经在氢气气氛,1150℃×1h高温处理,3SiCP/Fe界面反应形成以Fe3Si,颗粒状石墨和Fe3C为主的反应产物.Fe3Si和颗粒状石墨构成反应区,Fe3C在金属基体晶界形成片状珠光体.10SiCP/Fe中的界面反应更加激烈,SiCP被完全消耗,并被由Fe3Si和石墨颗粒构成的反应区所替代,金属基体因含Si量高而脆化.SiCP表面氧化膜通过隔离原本相互接触的SiC与Fe以阻碍Fe,Si和C原子的相互扩散,有利于抑制O-SiCP/Fe界面反应,提高其界面化学稳定性.","authors":[{"authorName":"汤文明","id":"29f2f436-5685-4088-8f8b-96a34eb28913","originalAuthorName":"汤文明"},{"authorName":"郑治祥","id":"dd8bcabb-c9c3-4ed1-902f-7ea3b66d45a7","originalAuthorName":"郑治祥"},{"authorName":"丁厚福","id":"c5e07e35-4b86-4927-8ff1-b50a1a07efc0","originalAuthorName":"丁厚福"},{"authorName":"金志浩","id":"c1ad6383-50a9-488d-b7ab-c7d639cf89fd","originalAuthorName":"金志浩"}],"doi":"10.3969/j.issn.1005-5053.2001.04.005","fpage":"18","id":"c6f1a422-f08d-4eb4-833c-553159cad333","issue":"4","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"e4727c86-0725-4b43-bba3-5753c7f02336","keyword":"钝化氧化","originalKeyword":"钝化氧化"},{"id":"d6946435-33c2-4956-b78c-cdede6db56c6","keyword":"界面反应","originalKeyword":"界面反应"},{"id":"ec3069e9-27f2-4112-b962-199ae79e4629","keyword":"反应阻挡层","originalKeyword":"反应阻挡层"},{"id":"77a68ab2-1bcb-437a-b582-45706acd29d4","keyword":"化学稳定性","originalKeyword":"化学稳定性"}],"language":"zh","publisherId":"hkclxb200104005","title":"O-SiCP/Fe界面化学稳定性","volume":"21","year":"2001"},{"abstractinfo":"实验的目的是分析牙科热压技术对新型二硅酸锂玻璃陶瓷微观结构和化学稳定性的影响.对Li2O-SiO2-K2O-Al2O3-Zr02-P2O2玻璃系统进行晶化热处理,应用牙科热压技术制备化学稳定性测试试件.X射线衍射(XRD)分析热压前后玻璃陶瓷的物相组成,扫描电镜(SEM)观察微观结构,根据ISO6872标准测试材料的化学稳定性.结果表明,热压前后玻璃陶瓷的晶相组成均以二硅酸锂(Li2Si2O5)为主,热压后,主峰强度增高,晶体尺寸增大,并且呈现沿热压方向的定向排列趋势.热压前后玻璃陶瓷的化学稳定性均符合ISO6872标准要求,热压组试件对化学腐蚀有较强的抵抗性.牙科热压技术能够改变实验玻璃陶瓷的微观结构,进而提高材料的化学稳定性.","authors":[{"authorName":"王富","id":"ab16d273-5c6d-4787-919a-9ff22644788c","originalAuthorName":"王富"},{"authorName":"陈吉华","id":"bfc281b4-090d-47d2-9ed4-287f20daa164","originalAuthorName":"陈吉华"},{"authorName":"高婧","id":"8f0a694e-aef3-43cd-8963-34e3410f313e","originalAuthorName":"高婧"},{"authorName":"马新沛","id":"1c0f7add-b4a7-484d-81e8-48a4e3625e96","originalAuthorName":"马新沛"},{"authorName":"李光新","id":"39307e79-523e-4481-b8eb-4b1ee0080ac4","originalAuthorName":"李光新"}],"doi":"","fpage":"1192","id":"74f4288e-3274-429a-92b6-82c42b8c9038","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"69384726-2a3e-4347-94b3-f98c13884e98","keyword":"玻璃陶瓷","originalKeyword":"玻璃陶瓷"},{"id":"bc3cca12-9dea-44ca-941c-8b9f44d6da64","keyword":"二硅酸锂","originalKeyword":"二硅酸锂"},{"id":"5ece335f-fe7f-497f-b3f2-087796fd4d01","keyword":"化学稳定性","originalKeyword":"化学稳定性"},{"id":"7479ba54-774a-4664-8825-93c5bf68b31e","keyword":"热压技术","originalKeyword":"热压技术"}],"language":"zh","publisherId":"gncl200907040","title":"牙科热压技术对新型玻璃陶瓷微观结构和化学稳定性的影响","volume":"40","year":"2009"},{"abstractinfo":"采用简化的PIRAC工艺对SiCp进行涂覆处理,并研究了该涂层对SiCp/Fe界面化学稳定性的影响.实验结果表明,该工艺可以在SiCp表面形成一层均匀、致密的涂层,它主要由Cr3Si、Cr7C3和Cr23C6构成.3SiCp/Fe界面反应强烈,绝大多数的SiC被消耗掉,原位形成主要由Fe3Si构成的界面反应区,并在金属基体晶界形成片状珠光体团.而3P-SiCp/Fe的界面反应很小,SiCp表面涂层保存完好,SiCp基本上未遭到破坏,并与基体紧密结合.涂层通过隔离Fe与SiC的接触,抑制P-SiCp/Fe界面反应,有助于提高其界面化学稳定性,改善界面结构.","authors":[{"authorName":"汤文明","id":"5e81dfb3-69df-43bd-9805-108e5066407e","originalAuthorName":"汤文明"},{"authorName":"郑治祥","id":"5aae21cb-5868-46e0-8978-0af67b224f9f","originalAuthorName":"郑治祥"},{"authorName":"丁厚福","id":"c5e5e32e-cd89-40a3-a6e7-00a1b9cfd470","originalAuthorName":"丁厚福"},{"authorName":"金志浩","id":"e6cc3a30-9138-4831-907d-3d532ea44864","originalAuthorName":"金志浩"}],"doi":"10.3969/j.issn.1004-244X.2001.06.009","fpage":"30","id":"9dde3f39-e34f-4407-9429-d2162acb8604","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"e9a7053d-9ad3-4e20-b869-3ec040ab9d59","keyword":"涂层","originalKeyword":"涂层"},{"id":"55cfb5f9-e29f-4122-8446-3e6d2080209c","keyword":"界面反应","originalKeyword":"界面反应"},{"id":"d7c0b42b-3dc9-4b10-bf6e-be15dcd08d72","keyword":"化学稳定性","originalKeyword":"化学稳定性"}],"language":"zh","publisherId":"bqclkxygc200106009","title":"PIRAC-SiCp/Fe界面化学稳定性","volume":"24","year":"2001"},{"abstractinfo":"采用固相反应法制备了氧离子导体La2MO2-yAlyO9-δ(y=0、0.1、0.2、0.3)陶瓷样品.用XRD表征了其晶体结构,并用交流阻抗谱方法研究了样品在还原气氛中(5%Hz/Ar)的化学稳定性.结果表明,La2Mo1.9Al0.1-O9-δ样品在还原气氛中的化学稳定性最好,当Al的掺杂量达到10%(y=0.2)时,样品就会被分解,同时化学稳定性能降低.","authors":[{"authorName":"李相虎","id":"e84a4d0a-4c79-4d87-b9e8-b267884c45cc","originalAuthorName":"李相虎"},{"authorName":"李丹","id":"00626eb2-1618-4fab-9f4d-240563521ded","originalAuthorName":"李丹"}],"doi":"","fpage":"15","id":"0587516f-25db-42af-8c63-b86d41c97203","issue":"16","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"646fbc9a-4154-4353-88ac-f328b82e79d8","keyword":"氧离子导体","originalKeyword":"氧离子导体"},{"id":"bfe39d08-0f0c-4b02-b028-9d9ea1126157","keyword":"La2Mo2O9","originalKeyword":"La2Mo2O9"},{"id":"eddc9887-e4bb-4c3e-98d6-83281cb5ad52","keyword":"化学稳定性","originalKeyword":"化学稳定性"},{"id":"525aeed9-45c8-4410-ad86-90e9fe53f839","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"cldb201016005","title":"氧离子导体La2Mo2-yAlyO9-δ的化学稳定性研究","volume":"24","year":"2010"},{"abstractinfo":"研究了铁磷酸盐玻璃固化我国高放废液全分离流程中产出的锶废物及铯废物,熔制了相应的固化体.用XRD,IR测试了固化体的微观结构,用产品一致性试验方法(PCT)研究固化体的化学稳定性.研究表明:在所选的废物包容量范围内可熔制得均质模拟废物铁磷酸盐玻璃固化体,玻璃的主要结构基团为P2O4-7,均质玻璃固化体有较好的化学稳定性.","authors":[{"authorName":"胡唐华","id":"bcd16c1c-e22a-4bd1-afb6-5e63cb11e13c","originalAuthorName":"胡唐华"},{"authorName":"徐世平","id":"50837b6c-64f2-49c7-b2d8-6f1207c3fc8c","originalAuthorName":"徐世平"},{"authorName":"鲍卫民","id":"cdb93f27-d328-46be-947b-f23f7e23dca2","originalAuthorName":"鲍卫民"},{"authorName":"宋崇立","id":"04023c2a-5482-4a3a-a340-66c67f47d1cf","originalAuthorName":"宋崇立"},{"authorName":"冯孝贵","id":"be874158-0126-444a-835e-f791e41051aa","originalAuthorName":"冯孝贵"},{"authorName":"景山","id":"17166bad-01ca-44d8-9b63-3a1d33aa96d9","originalAuthorName":"景山"}],"doi":"10.3969/j.issn.1001-1625.2003.02.020","fpage":"86","id":"2121fc9c-f389-498b-af87-b919491d90ac","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"c2e25de3-8d0e-456a-a23f-7d25f39db1c8","keyword":"玻璃固化","originalKeyword":"玻璃固化"},{"id":"fd175163-2dab-4200-89d1-9c578e5f9bd4","keyword":"铁磷酸盐玻璃","originalKeyword":"铁磷酸盐玻璃"},{"id":"57225181-953c-4c34-8b44-044bf71ccde7","keyword":"模拟锶铯废物","originalKeyword":"模拟锶铯废物"},{"id":"0b4db949-1a78-4595-ac76-7ec52b80d215","keyword":"化学稳定性","originalKeyword":"化学稳定性"}],"language":"zh","publisherId":"gsytb200302020","title":"模拟锶铯废物铁磷酸盐玻璃固化及化学稳定性","volume":"22","year":"2003"},{"abstractinfo":"稀土掺杂的磷酸盐玻璃作为激光介质和特种光学玻璃材料,其化学稳定性研究是至关重要的.本文主要研究了掺加10mo1%和15mo1%Sm2O3的P2O5-BaO-Al2O3体系玻璃的化学稳定性,研究结果表明:玻璃的耐水性能受玻璃中离子含量的影响较大,Al3+和Sm3+离子的含量越高,结构越稳定,耐水性能越好;玻璃的耐酸性能与结构中阳离子的极化能力(Z2/r)有关,Z2/r越大,耐酸性能越好,而且玻璃的侵蚀是渐缓的,这是由于玻璃表面形成了一层明显的覆盖层所致;玻璃在碱性介质中的侵蚀机理是磷酸盐长链末节的金属离子被水化,产生P-O-P断键,形成正磷酸盐溶解到溶液中,同时,随着稀土离子的增加,耐碱性能变差.","authors":[{"authorName":"孟献丰","id":"9d5217bd-69f3-411c-80d7-920a1124eaf5","originalAuthorName":"孟献丰"},{"authorName":"陆春华","id":"8375a568-e71d-4064-a1ed-ecaa5abf63c3","originalAuthorName":"陆春华"},{"authorName":"张其土","id":"7d68ff60-3101-49b9-b3ad-c4f25cb85215","originalAuthorName":"张其土"},{"authorName":"倪亚茹","id":"9d8744ab-21b4-440d-92f6-04c0ac0e6c0d","originalAuthorName":"倪亚茹"},{"authorName":"许仲梓","id":"62c8884d-a3fc-406c-ac09-a3464d762871","originalAuthorName":"许仲梓"}],"doi":"10.3969/j.issn.1005-0299.2007.05.035","fpage":"734","id":"c18a7f40-d963-446d-9f3f-4b693e966a0d","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"49ae31a8-0d97-4411-8090-7e289495ddc1","keyword":"磷酸盐玻璃","originalKeyword":"磷酸盐玻璃"},{"id":"593031af-88c2-405b-a4cc-68aaecf5f14a","keyword":"稀土","originalKeyword":"稀土"},{"id":"3c31c81b-e33d-4e8f-adc8-e2351cfa648b","keyword":"化学稳定性","originalKeyword":"化学稳定性"},{"id":"023e8a41-e544-40a2-b737-9c8e6a5c454f","keyword":"侵蚀机理","originalKeyword":"侵蚀机理"},{"id":"ab386254-c16e-403a-ad27-89cee540f9c6","keyword":"覆盖层","originalKeyword":"覆盖层"}],"language":"zh","publisherId":"clkxygy200705035","title":"高掺量稀土磷酸盐玻璃化学稳定性的研究","volume":"15","year":"2007"},{"abstractinfo":"借助最新最权威基本的热力学数据,按化学平衡理论,分析SiC和Al2O3之间可能发生的化学反应,定量计算SiC中不同C活度、不同固相产物活度,不同温度下SiC和Al2O3间诸反应各气相产物分压和分压总和,精确分析SiC和Al2O3界面的热力学稳定性,提供一个大气压惰性气体环境SiC和Al2O3界面的热力学失稳判据,为SiC材料研究者提供可靠的参考资料.","authors":[{"authorName":"潘颐","id":"3f203198-0d5b-4c7f-9bea-f8cfa29f6e6e","originalAuthorName":"潘颐"},{"authorName":"益小苏","id":"2c9c7253-2095-4ff3-ac84-59e3c755187d","originalAuthorName":"益小苏"}],"doi":"10.3321/j.issn:1000-3851.2002.04.014","fpage":"61","id":"6de6365d-c70c-4c18-a1fb-a9c6cfa4e319","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"254f7575-bf4c-4ce5-b5ad-0270b2993c21","keyword":"碳化硅","originalKeyword":"碳化硅"},{"id":"bec22c20-f428-4305-8257-e125c5f2a76c","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"749d22ae-292f-4cf5-985f-5ab2ba0789d8","keyword":"界面热力学","originalKeyword":"界面热力学"},{"id":"9a61a99f-43db-4958-9c60-ecaabf9b4bb9","keyword":"化学稳定性","originalKeyword":"化学稳定性"}],"language":"zh","publisherId":"fhclxb200204014","title":"碳化硅与氧化铝界面化学稳定性研究","volume":"19","year":"2002"},{"abstractinfo":"良好的光化学稳定性是光致变色化合物实现工业实际应用的前提和保证.研究比较了几种有机光致变色化合物的可逆光致变色性的热稳定性和耐疲劳性等光化学稳定性能,提出了提高光化学稳定性的几种可行方法.","authors":[{"authorName":"张恒","id":"c928ca13-c699-42e2-b17d-10cbe6e27069","originalAuthorName":"张恒"},{"authorName":"杨卓如","id":"2f5cedec-e91a-4eba-9614-19241e723e13","originalAuthorName":"杨卓如"},{"authorName":"韦宝卿","id":"0932e594-3f5c-4110-9cf1-f4999a6352bc","originalAuthorName":"韦宝卿"}],"doi":"10.3969/j.issn.1671-5381.2006.04.014","fpage":"50","id":"07b7658c-2e8d-4645-90e5-7ae4163b7bcd","issue":"4","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"3b26e6b5-591c-4b4b-838d-04c220ff41e3","keyword":"光致变色","originalKeyword":"光致变色"},{"id":"740f111e-57e7-4841-99b5-cdd8abcb2942","keyword":"光化学","originalKeyword":"光化学"},{"id":"2626fadb-1e0c-4c97-aa77-8b8c5163ca0b","keyword":"化学稳定性","originalKeyword":"化学稳定性"}],"language":"zh","publisherId":"hccllhyyy200604014","title":"有机光致变色化合物光化学稳定性能研究","volume":"35","year":"2006"},{"abstractinfo":"为了探索Y2O3掺杂对锌硼硅玻璃化学稳定性的影响,利用传统高温熔融冷却法制备含Y2O3锌硼硅玻璃,在特定的侵蚀条件下研究了玻璃样品在去离子水和混合碱溶液中的腐蚀行为,利用扫描电镜和能谱仪分析腐蚀后的玻璃样品表面形貌和组分变化,电感耦合等离子发射光谱仪测试侵蚀液去离子水中各离子的浸出浓度,同时利用红外吸收光谱测试玻璃结构.试验表明,Y2O3掺杂提高锌硼硅玻璃的耐水性和耐碱性,掺杂1% Y2O3(摩尔分数)时化学稳定性最好;掺杂Y2O3的锌硼硅盐玻璃中[BO4]基团增多,玻璃整体网络结构连接程度增强,玻璃的化学稳定性提高.","authors":[{"authorName":"李雄伟","id":"06d9411e-181f-410e-b084-59dc2d503af4","originalAuthorName":"李雄伟"},{"authorName":"王觅堂","id":"d6d98027-f343-4967-8f22-43bd4277d537","originalAuthorName":"王觅堂"},{"authorName":"李梅","id":"c63e818c-1673-40b8-9c4b-28d42ca79ce3","originalAuthorName":"李梅"},{"authorName":"田俊虎","id":"6525fbb7-858d-49b5-bc97-aac83e533f3d","originalAuthorName":"田俊虎"},{"authorName":"刘芬","id":"38c8901c-6981-4443-8c7f-02862189f080","originalAuthorName":"刘芬"},{"authorName":"杨佳","id":"483f1839-4ad3-435f-8636-166674e71f1c","originalAuthorName":"杨佳"}],"doi":"10.16533/J.CNKI.15-1099/TF.201606007","fpage":"39","id":"98e6bef4-c4b9-4b3e-932b-576f4f8879ac","issue":"6","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"9bb07c45-3ea4-40f4-a220-52abcc1108a8","keyword":"硼硅酸盐玻璃","originalKeyword":"硼硅酸盐玻璃"},{"id":"0ef36fa2-97e2-40e9-a7c7-e810f04e24d4","keyword":"Y2O3","originalKeyword":"Y2O3"},{"id":"2021f08f-65be-4aae-91c2-7f7eaef26a52","keyword":"化学稳定性","originalKeyword":"化学稳定性"},{"id":"9111ba18-b94f-4b3c-8640-84afb87907e7","keyword":"结构","originalKeyword":"结构"}],"language":"zh","publisherId":"xitu201606007","title":"Y2O3对锌硼硅玻璃化学稳定性和结构的影响","volume":"37","year":"2016"},{"abstractinfo":"通过建立热力学可能的反应模型,分别计算了高温下镁及镁合金与一些金属氧化物和非氧化物反应的自由能变化,并用自由能判据分析了这些反应发生的可能性.结果表明,非氧化物SiC和ZrB2对镁及镁合金液具有良好的化学稳定性,可以作为熔炼镁及镁合金的坩埚材料使用,并用实验对这种材料在镁及镁合金液中的化学稳定性进行了验证.","authors":[{"authorName":"陈虎魁","id":"b194c2b5-48af-4828-b856-a7294c28431c","originalAuthorName":"陈虎魁"},{"authorName":"刘建睿","id":"4d6da38b-aae1-4d3f-9268-abd7b6700e90","originalAuthorName":"刘建睿"},{"authorName":"沈淑娟","id":"1a6c9169-f7da-4b2a-a9e8-2ec7584ee66e","originalAuthorName":"沈淑娟"},{"authorName":"黄卫东","id":"dd4e84f9-3a79-493b-b05e-47d11050718e","originalAuthorName":"黄卫东"}],"doi":"","fpage":"1921","id":"cde5a923-9882-41b6-ba38-02afa3d34b3e","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c1a10a35-1e86-4998-866a-fee8ba98db2b","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"789ab53a-8788-4e44-bd05-0468f4d91b37","keyword":"坩埚","originalKeyword":"坩埚"},{"id":"bfda9e95-bd59-4c46-b91f-d60318fc7e23","keyword":"材料","originalKeyword":"材料"},{"id":"5fef9a8f-7316-4059-b9d7-4105da8d0036","keyword":"化学稳定性","originalKeyword":"化学稳定性"}],"language":"zh","publisherId":"xyjsclygc200512019","title":"熔炼镁及镁合金用坩埚材料化学稳定性的热力学分析","volume":"34","year":"2005"}],"totalpage":4885,"totalrecord":48842}