{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"泡沫铝材料是一种典型的拉压双模量材料,即受拉与受压时弹性模量不同。使用 ABAQUS 有限元软件对泡沫铝夹芯板的三点弯曲行为进行了模拟。首先,对泡沫铝芯层采用可压缩泡沫模型,通过对芯层的受拉区和受压区采用不同的弹性模量来讨论拉压弹性模量差异对夹芯板三点弯曲行为的影响。同时,在泡沫铝压缩响应一致的情况下,对可反映拉压弹性模量差异的孔洞模型和未考虑拉压弹性模量差异的可压缩泡沫模型的夹芯板三点弯曲模拟结果进行了比较。研究表明,泡沫铝芯层的弹性模量对夹芯板的三点弯曲行为模拟有较大影响。若不考虑泡沫铝拉压弹性模量的差异,得到的夹芯板三点弯曲情况下的加载刚度和屈服荷载明显偏低。","authors":[{"authorName":"强斌","id":"5bfcea1c-352f-4ff7-b73f-d3409fca9ae2","originalAuthorName":"强斌"},{"authorName":"刘宇杰","id":"0c39aa54-2e73-4aef-8552-789f5aa443ba","originalAuthorName":"刘宇杰"},{"authorName":"阚前华","id":"5e529610-9acf-4ce3-a637-4e5c0e5dce24","originalAuthorName":"阚前华"},{"authorName":"陈哲","id":"2522ac08-7ad5-4d45-8475-27afe683a0cb","originalAuthorName":"陈哲"}],"doi":"10.3969/j.issn.1001-9731.2013.18.026","fpage":"2701","id":"c8c0ca50-c9d8-4ca7-bb41-3edbb1aba8b3","issue":"18","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"214ae4c5-2aed-4b44-bc66-e01c8c4d6913","keyword":"拉压双模量","originalKeyword":"拉压双模量"},{"id":"db45e1d0-4958-4a20-b94a-70ad9e1238d3","keyword":"泡沫铝夹芯板","originalKeyword":"泡沫铝夹芯板"},{"id":"2d0028e2-bb95-4dc3-9fad-d2b805940775","keyword":"可压缩泡沫模型","originalKeyword":"可压缩泡沫模型"},{"id":"f3914a16-bf06-4716-b331-ed9256f10170","keyword":"三点弯曲","originalKeyword":"三点弯曲"},{"id":"f1906811-e469-47c8-8810-daef601aa28f","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gncl201318026","title":"拉压弹性模量差异对泡沫铝夹芯板三点弯曲模拟的影响","volume":"","year":"2013"},{"abstractinfo":"对泡沫金属材料的连续本构模型与可压缩性塑性力学进行了评述,并介绍了根据J2流动理论得到的可压缩塑性力学的本构关系,以及该本构关系在求解泡沫金属材料平面应力裂纹缓慢扩展问题中的应用,并将所得结果与一般幂硬化材料中的相应结果进行了比较,从而在一定程度上揭示了可压缩塑性力学与经典塑性力学之间的关系.","authors":[{"authorName":"郭瑞平","id":"0c6bf834-463f-4062-a34d-bf9ecd5828f1","originalAuthorName":"郭瑞平"},{"authorName":"刘官厅","id":"80a7bee6-4a7d-4df7-8af7-e7197b4861b3","originalAuthorName":"刘官厅"},{"authorName":"范天佑","id":"a0889ebc-f746-45f2-b209-f1bcbe71b162","originalAuthorName":"范天佑"}],"doi":"","fpage":"293","id":"4784d95a-3b3d-4e16-a87f-9b8bc08fe475","issue":"z3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"26211944-a40a-473a-863c-775ce38624c2","keyword":"泡沫金属材料","originalKeyword":"泡沫金属材料"},{"id":"afd1853b-7faf-4172-954e-f426d6fcb0e9","keyword":"连续本构模型","originalKeyword":"连续本构模型"},{"id":"79e82f21-6e39-47d5-9519-777ad824a497","keyword":"可压缩塑性力学","originalKeyword":"可压缩塑性力学"}],"language":"zh","publisherId":"xyjsclygc2009z3065","title":"泡沫金属材料可压缩塑性力学研究进展","volume":"38","year":"2009"},{"abstractinfo":"推导了可压缩流动旋涡动力学基本方程,并分析了其基本性质。如同不可压流动,在可压缩流动中旋涡同样具有场与物质两重特征。得出了可压缩流中的旋涡诱导速度公式,对Biot-Savart方程进行了可压缩修正。基于Lagrangian框架下的粒子方法,求解可压缩流中的胀量项,从而用离散涡模型求解了非定常、不稳定、可压缩流场。数值实验验证了提议的计算方法有效性。并分析了可压缩流动中旋涡运动的特征,与不可压流动的差别。","authors":[{"authorName":"吴文权","id":"4753f783-6648-4465-ae15-e7ea8141f765","originalAuthorName":"吴文权"},{"authorName":"居江宁","id":"818041c4-2954-4782-b776-2cbe1a530a33","originalAuthorName":"居江宁"}],"doi":"","fpage":"163","id":"150ed9f3-43d7-414a-af6d-ea5b9bd6104e","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9773f74c-1fe2-4d1e-bf01-ca0facb64493","keyword":"可压缩流动","originalKeyword":"可压缩流动"},{"id":"8304bf13-afec-4d58-9a0f-1d46e15ab4a9","keyword":"旋涡","originalKeyword":"旋涡"},{"id":"fb9b5a9c-9974-4ff7-b388-5f76f8c97301","keyword":"离散涡方法","originalKeyword":"离散涡方法"}],"language":"zh","publisherId":"gcrwlxb200102010","title":"可压缩流动离散涡方法","volume":"22","year":"2001"},{"abstractinfo":"本文针对可压缩颗粒层建立了二维数值模型.首先利用颗粒层中颗粒间的相互位置关系,建立了每一个颗粒的力平衡方程,获得了每一个颗粒的受力大小,然后提出了颗粒层坍塌判据,在此基础上,建立了描述颗粒层的沉积-压缩-沉积的动态过程的可压缩颗粒层模型,模型计算结果表明,颗粒层压缩现象主要发生在下部区域,过滤速度越高、范德华力越小,颗粒层越易坍塌,并且颗粒层的压降出现了脉动,模型结果符合已知的实验结果.","authors":[{"authorName":"龙正伟","id":"59512fa4-0ac1-4ed1-8acb-d685c7d7f953","originalAuthorName":"龙正伟"},{"authorName":"姚强","id":"a3d07dfb-3269-4031-8af0-5b3b6cfd4e70","originalAuthorName":"姚强"},{"authorName":"黄斌","id":"0b9a667a-fe95-4029-ba5e-582bd844c185","originalAuthorName":"黄斌"},{"authorName":"宋蔷","id":"462b8b99-fc6c-4b37-be93-ef5424fafbb0","originalAuthorName":"宋蔷"}],"doi":"","fpage":"711","id":"dbcad31f-3646-493f-9059-c43a45b53c71","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"da890f09-c1fb-4396-b9f4-1d4bcc87288e","keyword":"颗粒层","originalKeyword":"颗粒层"},{"id":"98c4e6d9-542f-4f56-9422-cf4c098c04c5","keyword":"过滤","originalKeyword":"过滤"},{"id":"c99b253c-19ed-447b-b1da-74fa9d46e1b4","keyword":"压缩","originalKeyword":"压缩"},{"id":"bc7e2ec5-5b5c-4a93-9a24-2df06b070b5c","keyword":"坍塌","originalKeyword":"坍塌"}],"language":"zh","publisherId":"gcrwlxb200704054","title":"中和颗粒可压缩性颗粒层模型","volume":"28","year":"2007"},{"abstractinfo":"对标准κ-ε两方程湍流模型进行Durbin可实现性、Heinz湍流产生项以及Sarkar可压缩性修正三部分修正.尝试考虑结构可压缩性修正的影响,发展了一个同时考虑结构可压缩性修正和膨胀可压缩性修正的湍流模型.以超音速混合层为基础,分析了各个可压缩性修正的相对重要性,并将混合层厚度增长率、湍流动能的计算结果与实验结果进行比较,验证、分析修正模型的效果.结果表明,修正模型能够准确地预测到超音速混合层的发展,使模拟结果和实验结果更加接近.","authors":[{"authorName":"韩省思","id":"fce7013d-739d-4850-b37f-5ac86206e5a7","originalAuthorName":"韩省思"},{"authorName":"叶桃红","id":"2ec5a2e2-7ca5-4c06-8d58-eb6336e83af1","originalAuthorName":"叶桃红"},{"authorName":"朱旻明","id":"15089c50-78d0-4124-b7db-e645ede71ab0","originalAuthorName":"朱旻明"},{"authorName":"陈义良","id":"850beb62-11a7-4e0e-9446-8bd9c2f0d15c","originalAuthorName":"陈义良"}],"doi":"","fpage":"1053","id":"e890ac37-9059-4ae3-a1d8-27be41216341","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3b8fd308-cf04-40a8-9232-635b4fa28d0b","keyword":"可压缩湍流","originalKeyword":"可压缩湍流"},{"id":"aa20284d-9599-4942-bade-76f3a5db4bb4","keyword":"超音速混合层","originalKeyword":"超音速混合层"},{"id":"25653002-40f7-4c5a-9fd2-ba792cdd8bb6","keyword":"湍流模型","originalKeyword":"湍流模型"},{"id":"e2baec7c-ccd1-4600-a1f4-a9ec0cab1593","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200706048","title":"κ-ε湍流模型可压缩性修正在超音速混合层中的应用研究","volume":"28","year":"2007"},{"abstractinfo":"提出一种基于D2Q9标准格子的低马赫数可压缩格子Boltzmann模型,模拟了管内一维气体谐振。气体振荡由位于谐振管左端的活塞振动引起,传播至右端并反射回来。利用本文模型捕捉到了谐振频率附近不同频率下的激波现象,得到了谐振频率下不同位置处轴向速度、密度和温度随时间和沿轴向的变化规律。模拟结果和理论分析及前人文献结果相一致,验证了本文所提出的基于标准格子的低马赫数可压缩格子Boltzmann模型的有效性。","authors":[{"authorName":"李庆","id":"d90e9e16-ccc6-4d70-8a72-65e4e5b92520","originalAuthorName":"李庆"},{"authorName":"何雅玲","id":"ab1d8c96-e85f-44f7-9e00-f96c59910fcb","originalAuthorName":"何雅玲"},{"authorName":"何超","id":"94482341-4641-4fc0-9b78-bb5bb333162b","originalAuthorName":"何超"}],"doi":"","fpage":"1585","id":"4a75c548-5025-41f1-b4f0-d5aa32585a38","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c1e0d34c-3ffb-41e9-9227-4cedfa8cc435","keyword":"低马赫可压缩流","originalKeyword":"低马赫可压缩流"},{"id":"7f5565e9-f241-46d8-bab7-7bf284e84b73","keyword":"格子Boltzmann方法","originalKeyword":"格子Boltzmann方法"},{"id":"23a06e1e-5d00-44a8-bb23-2a3b1e139b2a","keyword":"气体谐振","originalKeyword":"气体谐振"}],"language":"zh","publisherId":"gcrwlxb201209030","title":"基于标准格子的低马赫可压缩Boltzmann模型及应用于气体谐振的模拟","volume":"33","year":"2012"},{"abstractinfo":"研究了复杂物理场作用下恒温不可压缩熔体注射充模取向-形态关系模型理论.针对恒温不可压缩熔体缠结大分子链单体在注塑充模过程中的无轨形变特性,建立了以等效末端距矢量(end-to-end vector,ETEV)为核心的聚合物充模流动诱导取向物理模型;基于不可逆热力学与连续介质力学理论,研究得出了与胡克定律具有类似形式的缠结大分子链单体取向形变模型,进而得出了恒温不可压缩聚合物充模取向应力-形态关系线弹性理论模型;研究了聚合物充模取向的高弹形变特性,引入Langevin模型以表征大分子链单体相关参量与微元体积之间的定量关系,得出了理论上等价、适配性更高的聚合物充模取向应力-形态关系高弹性理论模型;研究了相关理论模型的结构特点与物理性态,并与经典K-BKZ模型进行了比较,说明了该模型对表征相关聚合物充模取向工程问题具有较好的适配性与科学性.","authors":[{"authorName":"刘东雷","id":"81c7ff46-80b5-4aa5-ab80-5003fdf0260c","originalAuthorName":"刘东雷"},{"authorName":"曹文华","id":"e1d8e571-1b05-4a11-a13a-21960cfc8839","originalAuthorName":"曹文华"},{"authorName":"辛勇","id":"62e904f3-033f-421a-8c46-bf02c0376dda","originalAuthorName":"辛勇"},{"authorName":"孙玲","id":"c8bbb7e0-d626-4c69-98fa-f9fc68b8dbc2","originalAuthorName":"孙玲"}],"doi":"","fpage":"109","id":"55e4a494-225b-49a0-acbd-d1420c75146c","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"1f9b6f31-c75f-448e-b13a-d48d09a67179","keyword":"注射成型","originalKeyword":"注射成型"},{"id":"3f16b41f-056f-4baa-ab39-161ea3d46e75","keyword":"恒温不可压缩熔体","originalKeyword":"恒温不可压缩熔体"},{"id":"84d460a0-b6d3-4e04-b92d-2f5c247ba4ea","keyword":"取向","originalKeyword":"取向"},{"id":"7f9d1cb1-11f4-41a5-97bf-0ed4e949e6ec","keyword":"末端距矢量","originalKeyword":"末端距矢量"},{"id":"da264f78-349e-4f0c-b7aa-e6dcc4117b4d","keyword":"应力-形态关系模型","originalKeyword":"应力-形态关系模型"}],"language":"zh","publisherId":"gfzclkxygc201408022","title":"恒温不可压缩熔体注塑充模取向应力-形态关系模型理论","volume":"30","year":"2014"},{"abstractinfo":"通常人们采用不可压缩模型描述纤维表面过滤压降变化.本实验考虑了颗粒的可压缩性,实验研究了不同过滤速度和是否有静电除尘器(ESP)预处理颗粒层压降变化规律.我们的研究显示,未有ESP预处理的颗粒层在某个压力以上出现频繁的\"压降跳跃\",ESP预处理的结果呈周期上升.","authors":[{"authorName":"黄斌","id":"f01b9501-5ec6-44d9-8d5e-bc237da03530","originalAuthorName":"黄斌"},{"authorName":"徐海卫","id":"6d1ff0c6-f051-4785-bfc9-009ec37195b2","originalAuthorName":"徐海卫"},{"authorName":"姚强","id":"a3045ce3-5a62-473d-aec9-f8bbc1aec554","originalAuthorName":"姚强"}],"doi":"","fpage":"891","id":"aed4997e-76d9-4343-8ccb-7bc301ac8d91","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"7c28d263-1ec2-4979-80b2-3e658b3e5986","keyword":"除尘","originalKeyword":"除尘"},{"id":"c075237f-534e-4733-b3e0-f311b36af7b1","keyword":"颗粒物","originalKeyword":"颗粒物"},{"id":"7863d306-dac8-487e-95d6-796ba1b0794c","keyword":"压降","originalKeyword":"压降"},{"id":"248aca63-8501-4940-adab-9fb574c7279d","keyword":"颗粒链","originalKeyword":"颗粒链"}],"language":"zh","publisherId":"gcrwlxb200505054","title":"可压缩性颗粒层过滤实验研究","volume":"26","year":"2005"},{"abstractinfo":"针对热压工艺中单向纤维布的压缩行为,通过自行设计的纤维可压缩性测试装置测得压缩曲线,并用Gutowski纤维压缩方程进行拟合.提出了表征可压缩性的参数,考察了初始纤维体积分数、层数、润湿介质、铺层方式和纤维种类对单向纤维布可压缩性的影响.结果表明,层数、初始纤维体积分数和润湿介质对单向纤维铺层的可压缩性没有显著影响,纤维的干湿状态、铺层方式和纤维种类对纤维层的可压缩性有明显影响.","authors":[{"authorName":"刘洪新","id":"c1cda137-c07e-4a5d-8388-4b7a9637c1b2","originalAuthorName":"刘洪新"},{"authorName":"张佐光","id":"404f8bfe-3311-4214-96ab-c79ca47c25fd","originalAuthorName":"张佐光"},{"authorName":"顾轶卓","id":"bd4b0cf6-1151-4157-9fed-780080b15bd8","originalAuthorName":"顾轶卓"},{"authorName":"李敏","id":"63d279e7-1eae-4882-9da1-0e87c9edafcc","originalAuthorName":"李敏"}],"doi":"10.3321/j.issn:1000-3851.2006.03.002","fpage":"5","id":"13494df0-39e9-4a24-ab9d-b4929c230b2b","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"d5759431-ff15-45a3-8e56-9eb4382e6f09","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"3cef9819-9db8-424a-b7f8-ff031feac396","keyword":"热压工艺","originalKeyword":"热压工艺"},{"id":"5255cc33-2720-4831-bf86-38458582c8c0","keyword":"可压缩性","originalKeyword":"可压缩性"},{"id":"33285efd-a146-4946-bcee-fe5fd10fa462","keyword":"单向纤维布","originalKeyword":"单向纤维布"}],"language":"zh","publisherId":"fhclxb200603002","title":"单向纤维布可压缩性的实验研究","volume":"23","year":"2006"},{"abstractinfo":"本文采用纤维压缩模型对玄武岩单向布在压实过程阶段的可压缩性进行了研究.结果发现,玄武岩单向布的压缩过程符合Gutowski方程,并且与织物铺层厚度无关.并在此基础上通过对试验数据的拟合,得到了描述玄武岩单向布压实过程中纤维体积含量变化的具体方程.","authors":[{"authorName":"张兴刚","id":"41eb6ae3-14ca-40b8-858b-669661730fc3","originalAuthorName":"张兴刚"},{"authorName":"郑劲东","id":"c81caca3-eb8e-47ba-8f2c-cc30693cbadf","originalAuthorName":"郑劲东"},{"authorName":"杨勇","id":"2ef09d27-7b61-4a62-9722-7493a44d0132","originalAuthorName":"杨勇"},{"authorName":"王利","id":"6ebfa063-7bbd-4a15-8aff-26f124d3fe6b","originalAuthorName":"王利"}],"doi":"10.3969/j.issn.1003-0999.2009.04.006","fpage":"21","id":"52511bb1-6399-455e-be17-70cd0c3cec3f","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"185ce35d-6c8b-4cd1-9404-377e297bc6a9","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"81a40421-1ac3-4642-acf5-b4bf2eb00525","keyword":"可压缩性","originalKeyword":"可压缩性"},{"id":"50b41bf9-0cb8-4161-9142-2796d2b73b8a","keyword":"玄武岩","originalKeyword":"玄武岩"},{"id":"e00ab18a-e83e-414c-8494-c9d04f626888","keyword":"单向纤维布","originalKeyword":"单向纤维布"}],"language":"zh","publisherId":"blgfhcl200904006","title":"单向玄武岩纤维布的可压缩性研究","volume":"","year":"2009"}],"totalpage":2248,"totalrecord":22476}