{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以三乙二醇水溶液为反应介质,在常压和108℃条件下,快速生成含有元素 Li、Fe、P 的前驱体。XRD和SEM分析表明,所得前驱体属于无定形结构,与一定量葡萄糖混合后在600℃下焙烧3h后得到的是纳米级的LiFePO4/C材料。电化学测试结果表明,这种纳米级LiFePO4/C材料在2.3~4.2V之间0.2C倍率下放电容量达到156.3 mAh/g,并且具有较好的放电平台。5和10C放电容量仍能达到133.9和109.9mAh/g,表现出优异的倍率放电特性和循环性能。","authors":[{"authorName":"黄冬海","id":"f161c0c2-e6d7-48c2-9516-a609f8b3dc07","originalAuthorName":"黄冬海"},{"authorName":"常照荣","id":"f1826fc0-32c1-4a91-9f8c-56ca31852d33","originalAuthorName":"常照荣"},{"authorName":"李苞","id":"a126837d-f321-4c3f-bd55-ed8b7be5781a","originalAuthorName":"李苞"},{"authorName":"冯婷","id":"42c5a5be-d1d5-45a4-a96a-037b722f79ab","originalAuthorName":"冯婷"}],"doi":"10.3969/j.issn.1001-9731.2013.21.020","fpage":"3143","id":"be53c2a2-ed2a-41bf-8f10-ca020f8f194d","issue":"21","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b9875945-0ee4-4c73-a67c-a2551020f82f","keyword":"液相法","originalKeyword":"液相法"},{"id":"436182fc-1b10-4d2b-a6da-1f7c753906a7","keyword":"无定形","originalKeyword":"无定形"},{"id":"20c1a41e-8bd4-4596-8178-4cce6f1d94a0","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"4003ff78-531e-4cd9-907f-f971f065dcf8","keyword":"LiFePO4/C","originalKeyword":"LiFePO4/C"},{"id":"552b234a-1e71-4ecd-b86e-ec1421ed1ab0","keyword":"三乙二醇","originalKeyword":"三乙二醇"}],"language":"zh","publisherId":"gncl201321020","title":"三乙二醇辅助液相快速合成高倍率性能的纳米磷酸亚铁锂","volume":"","year":"2013"},{"abstractinfo":"以甲基丙烯酸甲酯和三乙二醇酯交换反应的方式合成了三乙二醇双甲基丙烯酸酯,并考察了反应的时间进程,建立了酯交换反应的速率方程和表观动力学模型.结果表明,在反应的最初4 h内,三乙二醇双甲基丙烯酸酯的收率即可达到95%以上,酯交换反应速率方程遵循一级反应动力学规律;按照酯交换反应机理建立的动力学模型,经实验数据拟合,模型基本正确,线性相关系数为0.992 0.","authors":[{"authorName":"赵丽燕","id":"082fe47e-f079-475f-9d29-991e3a256e7c","originalAuthorName":"赵丽燕"},{"authorName":"蒋惠亮","id":"ab33c3bf-19ed-4eeb-b92d-12fc2c18da51","originalAuthorName":"蒋惠亮"}],"doi":"10.3969/j.issn.0253-4312.2006.07.013","fpage":"46","id":"c7683eb3-8cac-4ab8-aee8-7982159debd4","issue":"7","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"e46c51b4-c040-4b24-9511-6d4eb53a44d9","keyword":"三乙二醇双甲基丙烯酸酯","originalKeyword":"二缩三乙二醇双甲基丙烯酸酯"},{"id":"d678a563-1af6-4e6a-8a16-9d39285e9f91","keyword":"甲基丙烯酸甲酯","originalKeyword":"甲基丙烯酸甲酯"},{"id":"e8c9f2f2-da5e-4b5d-8d25-29cc1acf0287","keyword":"酯交换","originalKeyword":"酯交换"},{"id":"a2097a70-60db-47b0-afa0-1aeb4f5c9d8a","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"tlgy200607013","title":"甲基丙烯酸甲酯与三乙二醇酯交换的表观动力学研究","volume":"36","year":"2006"},{"abstractinfo":"以焙烧的水滑石(Mg/Al摩尔比为3)为催化剂,通过二乙二醇单乙醚和环氧乙烷(者摩尔比为5)的乙氧基化反应合成了三乙二醇单乙醚. 在500 ℃焙烧2 h的水滑石上三乙二醇单乙醚的选择性可达94.6%. 焙烧后的水滑石碱性增强,比表面积增大,并含有大量的微孔,对串联式乙氧基化反应具有选择性催化作用. 催化剂经回收处理后可重复使用6次以上.","authors":[{"authorName":"王永杰","id":"c2b22a83-b799-45bd-a694-f5ffa1aecf1a","originalAuthorName":"王永杰"}],"doi":"","fpage":"259","id":"bd4f1437-70ad-4b11-be3a-2401194aaa29","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"8d1317bc-9724-4094-86d4-a49403982d22","keyword":"水滑石","originalKeyword":"水滑石"},{"id":"da11116d-818c-48c4-9786-26c544f4d9d9","keyword":"","originalKeyword":"醇"},{"id":"d310ea13-14c7-4c5e-945f-2c209237470a","keyword":"二乙二醇单乙醚","originalKeyword":"二乙二醇单乙醚"},{"id":"268d2e78-2d67-4947-90b0-54e74f6dfc24","keyword":"环氧乙烷","originalKeyword":"环氧乙烷"},{"id":"e21abfaf-db0f-4fff-b2be-46b6fcfeb78b","keyword":"乙氧基化","originalKeyword":"乙氧基化"},{"id":"0ed21c37-31e2-4af7-b887-18bab659b2eb","keyword":"三乙二醇单乙醚","originalKeyword":"三乙二醇单乙醚"}],"language":"zh","publisherId":"cuihuaxb200404004","title":"焙烧的水滑石上醇类选择性乙氧基化合成三乙二醇单乙醚","volume":"25","year":"2004"},{"abstractinfo":"通过Sonogashira偶联等反应,合成了嵌段化合物9,10-双-(对-(甲氧基三乙二醇基)苯基乙炔基)蒽,通过1H NMR和基质辅助激光解吸电离时间飞行质谱(MALDI-TOF-MS)对其结构进行了表征.利用差示扫描量热仪(DSC)、偏光显微镜(POM)及小角X射线散射仪(SAXS)等技术手段对其本体自组装行为进行了研究,结果表明,化合物在固态相自组装成近晶A相(SmA相).光谱分析表明,该化合物继承了取代蒽类发光材料具有高荧光量子产率(Φf)的特点,是一种性能良好的光致发光材料.","authors":[{"authorName":"金光日","id":"b5df6263-5f3a-4ab1-9247-cd94376982e8","originalAuthorName":"金光日"},{"authorName":"朱吉凯","id":"7150247a-e1a8-40af-835e-e72952287eae","originalAuthorName":"朱吉凯"},{"authorName":"钟克利","id":"ee6aa47d-c9bc-4994-b3f1-3ebbc5d26e94","originalAuthorName":"钟克利"},{"authorName":"陈铁","id":"439dce9d-f248-4099-a756-592fc3268705","originalAuthorName":"陈铁"},{"authorName":"金龙一","id":"ba7163b7-3a04-4709-a8eb-759d048d2b17","originalAuthorName":"金龙一"}],"doi":"10.11944/j.issn.1000-0518.2015.02.140164","fpage":"177","id":"a0e78ab5-d42a-4ac9-8702-1282b4152a27","issue":"2","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"c42a3f2f-3cdd-43ce-9e2a-d0ec12e8d794","keyword":"自组装","originalKeyword":"自组装"},{"id":"d996c09c-128c-4248-b54a-14dbe7709d4b","keyword":"蒽","originalKeyword":"蒽"},{"id":"b17bc784-0459-49d7-aff0-ab3e5d5c492e","keyword":"荧光量子产率","originalKeyword":"荧光量子产率"},{"id":"d5cf36db-6159-4760-8488-7957e7b3ec8a","keyword":"近晶A相","originalKeyword":"近晶A相"},{"id":"57a063a0-ffd4-4784-b890-d3a52ec2dcf4","keyword":"Sonogashira偶联反应","originalKeyword":"Sonogashira偶联反应"}],"language":"zh","publisherId":"yyhx201502008","title":"9,10-双-(对-(甲氧基三乙二醇水溶液为反应介质,在常压和108℃条件下,快速生成含有元素 Li、Fe、P 的前驱体。XRD和SEM分析表明,所得前驱体属于无定形结构,与一定量葡萄糖混合后在600℃下焙烧3h后得到的是纳米级的LiFePO4/C材料。电化学测试结果表明,这种纳米级LiFePO4/C材料在2.3~4.2V之间0.2C倍率下放电容量达到156.3 mAh/g,并且具有较好的放电平台。5和10C放电容量仍能达到133.9和109.9mAh/g,表现出优异的倍率放电特性和循环性能。","authors":[{"authorName":"黄冬海","id":"f161c0c2-e6d7-48c2-9516-a609f8b3dc07","originalAuthorName":"黄冬海"},{"authorName":"常照荣","id":"f1826fc0-32c1-4a91-9f8c-56ca31852d33","originalAuthorName":"常照荣"},{"authorName":"李苞","id":"a126837d-f321-4c3f-bd55-ed8b7be5781a","originalAuthorName":"李苞"},{"authorName":"冯婷","id":"42c5a5be-d1d5-45a4-a96a-037b722f79ab","originalAuthorName":"冯婷"}],"doi":"10.3969/j.issn.1001-9731.2013.21.020","fpage":"3143","id":"be53c2a2-ed2a-41bf-8f10-ca020f8f194d","issue":"21","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b9875945-0ee4-4c73-a67c-a2551020f82f","keyword":"液相法","originalKeyword":"液相法"},{"id":"436182fc-1b10-4d2b-a6da-1f7c753906a7","keyword":"无定形","originalKeyword":"无定形"},{"id":"20c1a41e-8bd4-4596-8178-4cce6f1d94a0","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"4003ff78-531e-4cd9-907f-f971f065dcf8","keyword":"LiFePO4/C","originalKeyword":"LiFePO4/C"},{"id":"552b234a-1e71-4ecd-b86e-ec1421ed1ab0","keyword":"三乙二醇","originalKeyword":"三乙二醇"}],"language":"zh","publisherId":"gncl201321020","title":"三乙二醇辅助液相快速合成高倍率性能的纳米磷酸亚铁锂","volume":"","year":"2013"},{"abstractinfo":"以甲基丙烯酸甲酯和三乙二醇酯交换反应的方式合成了三乙二醇双甲基丙烯酸酯,并考察了反应的时间进程,建立了酯交换反应的速率方程和表观动力学模型.结果表明,在反应的最初4 h内,三乙二醇双甲基丙烯酸酯的收率即可达到95%以上,酯交换反应速率方程遵循一级反应动力学规律;按照酯交换反应机理建立的动力学模型,经实验数据拟合,模型基本正确,线性相关系数为0.992 0.","authors":[{"authorName":"赵丽燕","id":"082fe47e-f079-475f-9d29-991e3a256e7c","originalAuthorName":"赵丽燕"},{"authorName":"蒋惠亮","id":"ab33c3bf-19ed-4eeb-b92d-12fc2c18da51","originalAuthorName":"蒋惠亮"}],"doi":"10.3969/j.issn.0253-4312.2006.07.013","fpage":"46","id":"c7683eb3-8cac-4ab8-aee8-7982159debd4","issue":"7","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"e46c51b4-c040-4b24-9511-6d4eb53a44d9","keyword":"三乙二醇双甲基丙烯酸酯","originalKeyword":"二缩三乙二醇双甲基丙烯酸酯"},{"id":"d678a563-1af6-4e6a-8a16-9d39285e9f91","keyword":"甲基丙烯酸甲酯","originalKeyword":"甲基丙烯酸甲酯"},{"id":"e8c9f2f2-da5e-4b5d-8d25-29cc1acf0287","keyword":"酯交换","originalKeyword":"酯交换"},{"id":"a2097a70-60db-47b0-afa0-1aeb4f5c9d8a","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"tlgy200607013","title":"甲基丙烯酸甲酯与三乙二醇酯交换的表观动力学研究","volume":"36","year":"2006"},{"abstractinfo":"以焙烧的水滑石(Mg/Al摩尔比为3)为催化剂,通过二乙二醇单乙醚和环氧乙烷(者摩尔比为5)的乙氧基化反应合成了三乙二醇单乙醚. 在500 ℃焙烧2 h的水滑石上三乙二醇单乙醚的选择性可达94.6%. 焙烧后的水滑石碱性增强,比表面积增大,并含有大量的微孔,对串联式乙氧基化反应具有选择性催化作用. 催化剂经回收处理后可重复使用6次以上.","authors":[{"authorName":"王永杰","id":"c2b22a83-b799-45bd-a694-f5ffa1aecf1a","originalAuthorName":"王永杰"}],"doi":"","fpage":"259","id":"bd4f1437-70ad-4b11-be3a-2401194aaa29","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"8d1317bc-9724-4094-86d4-a49403982d22","keyword":"水滑石","originalKeyword":"水滑石"},{"id":"da11116d-818c-48c4-9786-26c544f4d9d9","keyword":"","originalKeyword":"醇"},{"id":"d310ea13-14c7-4c5e-945f-2c209237470a","keyword":"二乙二醇单乙醚","originalKeyword":"二乙二醇单乙醚"},{"id":"268d2e78-2d67-4947-90b0-54e74f6dfc24","keyword":"环氧乙烷","originalKeyword":"环氧乙烷"},{"id":"e21abfaf-db0f-4fff-b2be-46b6fcfeb78b","keyword":"乙氧基化","originalKeyword":"乙氧基化"},{"id":"0ed21c37-31e2-4af7-b887-18bab659b2eb","keyword":"三乙二醇单乙醚","originalKeyword":"三乙二醇单乙醚"}],"language":"zh","publisherId":"cuihuaxb200404004","title":"焙烧的水滑石上醇类选择性乙氧基化合成三乙二醇单乙醚","volume":"25","year":"2004"},{"abstractinfo":"通过Sonogashira偶联等反应,合成了嵌段化合物9,10-双-(对-(甲氧基三乙二醇基)苯基乙炔基)蒽,通过1H NMR和基质辅助激光解吸电离时间飞行质谱(MALDI-TOF-MS)对其结构进行了表征.利用差示扫描量热仪(DSC)、偏光显微镜(POM)及小角X射线散射仪(SAXS)等技术手段对其本体自组装行为进行了研究,结果表明,化合物在固态相自组装成近晶A相(SmA相).光谱分析表明,该化合物继承了取代蒽类发光材料具有高荧光量子产率(Φf)的特点,是一种性能良好的光致发光材料.","authors":[{"authorName":"金光日","id":"b5df6263-5f3a-4ab1-9247-cd94376982e8","originalAuthorName":"金光日"},{"authorName":"朱吉凯","id":"7150247a-e1a8-40af-835e-e72952287eae","originalAuthorName":"朱吉凯"},{"authorName":"钟克利","id":"ee6aa47d-c9bc-4994-b3f1-3ebbc5d26e94","originalAuthorName":"钟克利"},{"authorName":"陈铁","id":"439dce9d-f248-4099-a756-592fc3268705","originalAuthorName":"陈铁"},{"authorName":"金龙一","id":"ba7163b7-3a04-4709-a8eb-759d048d2b17","originalAuthorName":"金龙一"}],"doi":"10.11944/j.issn.1000-0518.2015.02.140164","fpage":"177","id":"a0e78ab5-d42a-4ac9-8702-1282b4152a27","issue":"2","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"c42a3f2f-3cdd-43ce-9e2a-d0ec12e8d794","keyword":"自组装","originalKeyword":"自组装"},{"id":"d996c09c-128c-4248-b54a-14dbe7709d4b","keyword":"蒽","originalKeyword":"蒽"},{"id":"b17bc784-0459-49d7-aff0-ab3e5d5c492e","keyword":"荧光量子产率","originalKeyword":"荧光量子产率"},{"id":"d5cf36db-6159-4760-8488-7957e7b3ec8a","keyword":"近晶A相","originalKeyword":"近晶A相"},{"id":"57a063a0-ffd4-4784-b890-d3a52ec2dcf4","keyword":"Sonogashira偶联反应","originalKeyword":"Sonogashira偶联反应"}],"language":"zh","publisherId":"yyhx201502008","title":"9,10-双-(对-(甲氧基三乙二醇基)苯基乙炔基)蒽的合成、自组装及其光谱分析","volume":"32","year":"2015"},{"abstractinfo":"采用碳酸甲酯(DMC)和1,6-己(HD)为原料,三乙胺为催化剂,通过酯交换反应合成了聚(碳酸1,6-己)酯(PHCDL).考察了反应条件对该过程的影响,得到了最优合成工艺条件:当三乙胺的用量为1,6-己(HD)的0.026%,常压下160 ℃反应3 h,然后180 ℃减压反应8h,得到目的产物PHCDL.三乙胺为Lewis碱,该缩聚反应被推断为通过碱催化的解反应来完成的.","authors":[{"authorName":"封悦霞","id":"bea45aed-4a17-4952-8248-a2231a15b964","originalAuthorName":"封悦霞"},{"authorName":"殷宁","id":"5ff75638-b74e-4998-ac98-bc000988e624","originalAuthorName":"殷宁"},{"authorName":"李其峰","id":"ca72a58d-0251-48bc-a421-5e4ed0fefd1b","originalAuthorName":"李其峰"},{"authorName":"王军威","id":"0922fb04-6571-441b-a89d-7e76ca778e52","originalAuthorName":"王军威"},{"authorName":"亢茂青","id":"460b3cc1-f258-46ec-8363-3b85fdf225dd","originalAuthorName":"亢茂青"},{"authorName":"王心葵","id":"b7da05e6-4ace-407d-a63a-79260ee52cf5","originalAuthorName":"王心葵"}],"doi":"","fpage":"28","id":"29048d8e-0a63-4e07-baf6-0c9ae356a5a7","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"1d70ce22-075d-4dd2-ae93-3ad86c7c88bd","keyword":"聚碳酸酯","originalKeyword":"聚碳酸酯二醇"},{"id":"74f94e51-0048-4cf2-98fb-0c187f8db65b","key{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于北京市城市河道水体发臭大量感官数据及水质监测数据,采用多元线性回归及有序Logistic回归建立北京市水体发臭回归模型.研究发现多元线性回归法与有序Logistic回归法整体准确率相似(78%-80%),但发臭评价准确率明显高于后者,更适合作为水体发臭回归方法进行评价.将该方法应用于北京市地表水发臭分级评价中,筛选确定了适合做水体发臭回归自变量的监测指标,发现溶解氧及氨氮起主要作用,对水体发臭贡献率约95%;有机类指标对解释水体发臭效果显著程度从大到小依次为:高锰酸盐指数>五日生化需氧量>化学需氧量,由于五日生化需氧量分析时间长、高锰酸盐指数多用于Ⅰ—Ⅲ类水体监测、化学需氧量是水环境污染物总量控制的关键指标,综合考虑建议采用化学需氧量为回归自变量;总磷不适合作为北京市城市河道水体发臭回归自变量.对2012年北京市部分城市河道水体发臭情况进行分析,结果发现本标准用于评价发臭程度与国家颁布的黑臭标准的评价结果吻合程度为95.6%,通过选取典型发臭水体进行分级评价,再次验证了该评价方法可行.","authors":[{"authorName":"魏文龙","id":"74016a58-4e79-43aa-a301-91a138a39903","originalAuthorName":"魏文龙"},{"authorName":"荆红卫","id":"f1e634f2-09b9-4868-a50a-e90e76a7a790","originalAuthorName":"荆红卫"},{"authorName":"张大伟","id":"c96de4d1-34a6-4a3f-8f9a-1759a15e9616","originalAuthorName":"张大伟"},{"authorName":"奚采亭","id":"e21ac848-7d49-4a18-84a9-0d031b200ca8","originalAuthorName":"奚采亭"},{"authorName":"郭婧","id":"4df08dd9-8138-4698-9da6-5130756b1076","originalAuthorName":"郭婧"},{"authorName":"邬晓东","id":"7d069f0c-08cb-4ab1-bd68-697d3c888366","originalAuthorName":"邬晓东"},{"authorName":"","id":"c5238fe5-f2ef-4011-b185-52b84dace818","originalAuthorName":"徐谦"},{"authorName":"陶蕾","id":"c45b3d10-dd34-44cf-8323-3fdcb8ec56d2","originalAuthorName":"陶蕾"}],"doi":"10.7524/j.issn.0254-6108.2017.02.2016080102","fpage":"439","id":"c931dc64-8d40-4561-aa56-fd35a6b03d44","issue":"2","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"120ed786-09ec-4d4b-b60c-8b653e7e38fe","keyword":"黑臭水体","originalKeyword":"黑臭水体"},{"id":"cc20bdf5-a270-43fc-bdc1-98943f7b63f7","keyword":"分级评价","originalKeyword":"分级评价"},{"id":"12096ea4-5c0a-4f55-be48-978de4cd808e","keyword":"多元线性回归","originalKeyword":"多元线性回归"},{"id":"7870e8d7-f578-4e65-a5e4-c1ce95ea06ad","keyword":"逻辑回归","originalKeyword":"逻辑回归"}],"language":"zh","publisherId":"hjhx201702027","title":"北京市城市河道水体发臭分级评价方法","volume":"36","year":"2017"},{"abstractinfo":"基于多元线性回归对北京市城市河道水体发黑感官数据及水质监测数据进行分析.通过比较与筛选发现,水色稀释倍数适合作为表征北京市城市河道水体发黑因变量,而溶解氧、化学需氧量、氨氮、总磷及总铁适合作为自变量,其中溶解氧、化学需氧量及总铁为主要因素.基于5项水质指标提出了北京市城市河道水体发黑分级评价方法,从非发黑到重度发黑共分4级,通过比较发现两个回归模型模拟计算结果与水色稀释倍数观测值大致相当.该评价方法首次将有机类污染指标同水中总铁结合,量化了北京市城市河道水体发黑程度,为未来“一河一策,消除黑臭”提供思路.","authors":[{"authorName":"魏文龙","id":"2b99bfd4-1b72-4505-a2aa-b046ca3b96ec","originalAuthorName":"魏文龙"},{"authorName":"荆红卫","id":"a2c32afe-270b-4360-afff-0dde786c8c74","originalAuthorName":"荆红卫"},{"authorName":"","id":"2bb64c9b-90e5-47b4-862e-359719dd983c","originalAuthorName":"徐谦"},{"authorName":"陶蕾","id":"0c0d7244-b343-4828-b8de-a934f699fe32","originalAuthorName":"陶蕾"},{"authorName":"奚采亭","id":"3c5522ef-2e35-433e-9f37-9edee611ac23","originalAuthorName":"奚采亭"},{"authorName":"郭婧","id":"1414cbd3-5b10-4dc0-b31d-49f191fe6f15","originalAuthorName":"郭婧"},{"authorName":"邬晓东","id":"19102447-d091-4e0e-a0e5-1983edc1e0e8","originalAuthorName":"邬晓东"}],"doi":"10.7524/j.issn.0254-6108.2016.07.2015122502","fpage":"1532","id":"737251a9-545b-4e1a-b4fd-430bc4dfea8b","issue":"7","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"89bcccf7-7ce9-458e-bc59-350319a8baad","keyword":"黑臭水体","originalKeyword":"黑臭水体"},{"id":"eabbc24d-6ee4-4638-82a2-7f08bd9bce8f","keyword":"分级评价","originalKeyword":"分级评价"},{"id":"a5158566-4648-42e6-a6e8-1b9600f974bf","keyword":"多元线性回归","originalKeyword":"多元线性回归"},{"id":"8ec1980e-d5b0-4db7-810a-447c0d30150d","keyword":"机理探讨","originalKeyword":"机理探讨"}],"language":"zh","publisherId":"hjhx201607026","title":"北京市城市河道水体发黑分级评价方法","volume":"35","year":"2016"},{"abstractinfo":"本文提出一种新的切向喷射式MOCVD反应器,反应气体从均匀分布于内壁的切向进口喷管喷入反应器,尾气从位于反应器中心的上方或下方出口排出.通过切向喷射,使气体发生人工可控的螺旋流,在水平方向逐渐旋转与加速,从而补偿反应物浓度从边缘进口到中心出口的沿程损失,以便获得均匀的薄膜沉积.针对新的反应器设计,结合GaN的MOCVD生长进行了三维数值模拟,确定了喷管夹角、喷管数目和反应器高度对生长区的温场、流场和浓度场的影响,优化了参数组合,并与传统的垂直喷射式反应器作了对比.此外,这款新型反应器能够摆脱复杂的托盘旋转系统.","authors":[{"authorName":"王国斌","id":"04700329-300f-4620-a32f-18389e01d698","originalAuthorName":"王国斌"},{"authorName":"左然","id":"f41881aa-39f8-4dfc-a222-a890840603a5","originalAuthorName":"左然"},{"authorName":"","id":"7484c568-1941-4e42-a120-ad5a8ff512a5","originalAuthorName":"徐谦"},{"authorName":"李晖","id":"11e96d55-7584-4d6c-b426-42106bf90985","originalAuthorName":"李晖"},{"authorName":"于海群","id":"8ae0b307-f3d0-43ff-a391-69402af4a9d4","originalAuthorName":"于海群"},{"authorName":"陈景升","id":"7ca80735-1080-4453-964d-0db820587245","originalAuthorName":"陈景升"}],"doi":"","fpage":"267","id":"14d86be4-287d-45c1-8534-a091ce57d0b2","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"12bf5c46-294b-4433-8740-db525a9f0437","keyword":"MOCVD反应器","originalKeyword":"MOCVD反应器"},{"id":"3e554991-31b6-4108-b874-d7e2ab425b8b","keyword":"切向喷射","originalKeyword":"切向喷射"},{"id":"d64f4e4d-9be4-4332-b132-28a433c23400","keyword":"中心出口","originalKeyword":"中心出口"},{"id":"cedb7518-7fff-4f46-88df-71f3216d86cc","keyword":"螺旋流动","originalKeyword":"螺旋流动"},{"id":"75a8c693-071e-4be9-a4a5-ebdf6bb3e84c","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"rgjtxb98201001053","title":"切向喷射式MOCVD反应器的设计与数值模拟","volume":"39","year":"2010"},{"abstractinfo":"通过采用部分结晶磷酸钙和磷酸氢钙制备了新型可注射可降解磷酸钙骨水泥.研究表明:该材料具备优良的可注射性能,并通过添加变性淀粉,显著改善了材料的抗溃散性能,骨水泥的水化产物是直径和长度在分别约为100和1000nm左右的棒状类骨羟基磷灰石.所研制的骨水泥在体温(37℃)条件下凝结较快,而在室温(25℃)和冷藏温度(5℃)可在较长时间保持不固化,这就为骨水泥的临床应用提供了很有利的条件.体外溶血试验、体外细胞毒试验、热原性试验、小鼠的急性毒性试验、微核试验、豚鼠的致敏性试验、小鼠的肌内埋植试验及兔的骨内埋植试验等一系列毒性及生物相容性试验表明该材料无毒副作用,具有良好的生物相容性.复合rhBMP-2的可注射磷酸钙骨水泥植入猕猴椎体后的近远期影像学和组织学观察表明,骨水泥可降解且降解和新骨长入基本同步.","authors":[{"authorName":"叶建东","id":"6b79da3f-623c-43d8-90d6-6c55013884a6","originalAuthorName":"叶建东"},{"authorName":"王秀鹏","id":"e24eb54f-7285-4444-854a-0b27e40a13e8","originalAuthorName":"王秀鹏"},{"authorName":"白波","id":"b1314aea-59e7-4a33-8bd7-ba54972e9464","originalAuthorName":"白波"},{"authorName":"","id":"82838f8f-004c-466a-ae68-227f23089ed2","originalAuthorName":"徐谦"}],"doi":"","fpage":"271","id":"5c6373d6-71ac-4ec7-b6a6-f5d2d73c16a2","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"125fc5a1-ffec-4d8e-a7f3-7f383c32dfda","keyword":"磷酸钙骨水泥","originalKeyword":"磷酸钙骨水泥"},{"id":"85a40fb1-0eef-4212-8058-00101fa507df","keyword":"可注射","originalKeyword":"可注射"},{"id":"1f7787ef-07ea-44ed-aaa3-d489f1f04bf9","keyword":"可降解","originalKeyword":"可降解"},{"id":"c6504a77-caa8-4ec3-acb4-2950de7bfa19","keyword":"抗溃散","originalKeyword":"抗溃散"}],"language":"zh","publisherId":"gncl200802028","title":"一种可注射可降解磷酸钙骨水泥的结构与性能","volume":"39","year":"2008"},{"abstractinfo":"制备了一种樟脑磺酸掺杂聚苯胺(PANI-(D-CSA))新型复合阳极,研究了其最佳配比,并在海底微生物燃料电池(BMFC)中测定其电化学性能.采用XRD衍射、热失重对聚苯胺阳极材料进行了表征.结构分析表明,PANI-(D-CSA)为部分结晶,热稳定性较好.性能测试表明,PANI-(D-CSA)质量分数为50%时复合阳极具有最小的内阻,最低的阳极极化曲线斜率,同时电池的输出功率密度显著提高,最大输出功率密度达到233.9 mW/m2,是BMFC-石墨阳极的3.7倍.这种新型复合阳极有望应用在BMFC中以得到较高的输出功率密度.","authors":[{"authorName":"赵仲凯","id":"bedbec90-a561-43bf-b6ed-2872dade2a97","originalAuthorName":"赵仲凯"},{"authorName":"付玉彬","id":"475bb29d-c57f-4bf5-ad62-bbc70cde80d9","originalAuthorName":"付玉彬"},{"authorName":"宰学荣","id":"c1138f6f-3f11-4618-99c6-4c65e2e3d5b0","originalAuthorName":"宰学荣"},{"authorName":"","id":"9a4775b0-6580-4056-89eb-637c6c88d8be","originalAuthorName":"徐谦"},{"authorName":"李魁忠","id":"58c8b101-3acd-47b7-a06b-4808c6b3f9f0","originalAuthorName":"李魁忠"},{"authorName":"刘佳","id":"bbd7f0d5-3f24-48a3-b0a9-8be62a9dec0a","originalAuthorName":"刘佳"}],"doi":"10.3969/j.issn.1003-1545.2011.04.008","fpage":"33","id":"981db083-3b4c-45d3-ade2-5018315b0f1d","issue":"4","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"232fd5cb-d6ca-4215-bcc9-b71a63cad82c","keyword":"樟脑磺酸掺杂聚苯胺","originalKeyword":"樟脑磺酸掺杂聚苯胺"},{"id":"54b0a478-8bc6-4106-b660-a91d0c05a6f3","keyword":"复合阳极","originalKeyword":"复合阳极"},{"id":"f8727dba-90d1-49de-9d20-86c857888c91","keyword":"电化学性能","originalKeyword":"电化学性能"},{"id":"ab8e04a7-9cc6-4031-836c-0a1b54dd77f0","keyword":"海底微生物燃料电池","originalKeyword":"海底微生物燃料电池"}],"language":"zh","publisherId":"clkfyyy201104008","title":"樟脑磺酸掺杂聚苯胺复合阳极在海底微生物燃料电池中的应用","volume":"26","year":"2011"},{"abstractinfo":"阳极材料直接影响海底生物燃料电池的性能.本文采用一种新型改性试剂-Fenton试剂对石墨阳极进行改性处理.结果表明,改性后电极表面主要引入了羟基和羰基,接触角从82°减小到48°,亲水性明显提高.塔菲尔曲线显示,改性前后交换电流密度分别为0.05A/m2、0.17 A/m2,电极的动力学活性显著增加,提高了两倍之多.改性和未改性电池的最大输出功率密度分别为33.21 mW/m2、20.27 mW/m2,提高了64%.这是由于阳极表面处理后引入的羟基和羰基充当了电子转移介体,明显提高了电极反应动力学活性,增加了阳极表面细菌吸附数量,加速了阳极反应,提高了电池性能.该类高性能阳极材料可望用于海底生物燃料电池的开发.","authors":[{"authorName":"刘佳","id":"1e457503-f0ff-48d8-b64d-818267900d18","originalAuthorName":"刘佳"},{"authorName":"付玉彬","id":"0d8ca1bb-c4fa-4d44-9750-85230a23517b","originalAuthorName":"付玉彬"},{"authorName":"","id":"84613ece-aa32-4052-a61b-218817fd10ba","originalAuthorName":"徐谦"},{"authorName":"李魁忠","id":"e6f7fda1-0052-4965-ac54-551860ca120a","originalAuthorName":"李魁忠"},{"authorName":"赵仲凯","id":"7cf49a36-5efa-4864-b808-2975faea1ee3","originalAuthorName":"赵仲凯"}],"doi":"10.3969/j.issn.1003-1545.2011.03.012","fpage":"41","id":"a7fe3894-849d-464c-8ae6-2a15841dee78","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"9adcd3f4-0961-4dd5-8347-db71bf4568ab","keyword":"海底生物燃料电池(BMFC)","originalKeyword":"海底生物燃料电池(BMFC)"},{"id":"04de8442-048c-43f9-90cf-accb89b2d7c5","keyword":"阳极改性","originalKeyword":"阳极改性"},{"id":"2dbf332b-33da-4bea-92df-38c4d0c5bf10","keyword":"Fenton试剂","originalKeyword":"Fenton试剂"},{"id":"e1cc176f-81ff-4aff-8f2f-5374b1384671","keyword":"输出功率","originalKeyword":"输出功率"},{"id":"109e59f0-aa06-4d4e-9e90-3391ca95a25e","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"clkfyyy201103012","title":"Fenton试剂改性海底生物燃料电池阳极及电化学性能","volume":"26","year":"2011"},{"abstractinfo":"采用阴极电沉积和阳极氧化法制备了Fe2O3改性TiO2纳米管(Fe2O3/TiO2-NTs)电极,运用场发射扫描电子显微镜、透射电子显微镜、X射线衍射和紫外-可见漫反射光谱等手段对其进行了表征,考察了其光电化学性能,并研究了复合电极光电催化降解甲基橙染料废水的反应性能.结果表明,Fe2O3的负载成功地将TiO2-NTs的光响应区间拓宽到可见光区域,Fe2O3/TiO2-NTs复合电极的光电流密度达到TiO2-NTs电极的3倍.在光电催化反应中,Fe2O3/TiO2-NTs复合电极对甲基橙的脱色效果明显优于TiO2-NTs电极,以Fe2O3/TiO2-NTs为阳极,光照5 min,甲基橙溶液的脱色率可达90%以上.","authors":[{"authorName":"丛燕青","id":"c9846c67-68ef-47f8-9145-72593648bc9f","originalAuthorName":"丛燕青"},{"authorName":"李哲","id":"79c9046d-becf-4819-ae6f-bb71c59a0e57","originalAuthorName":"李哲"},{"authorName":"张轶","id":"d444653e-2506-4a76-86c4-c29468c23234","originalAuthorName":"张轶"},{"authorName":"王齐","id":"fb47c352-5473-4fa8-8518-987cbee7ce46","originalAuthorName":"王齐"},{"authorName":"","id":"aedceef1-14c2-4b7b-996b-7f47ce71be9c","originalAuthorName":"徐谦"},{"authorName":"伏芳霞","id":"73e8ba69-1fa5-49a1-acaf-a28fa4b828cd","originalAuthorName":"伏芳霞"}],"doi":"10.3724/SP.J.1088.2012.20429","fpage":"1402","id":"b6c92ad2-b4db-4ebd-b0f4-9ea371128b3a","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"a64e200f-32fe-4605-bf39-9829904144e7","keyword":"氧化铁","originalKeyword":"氧化铁"},{"id":"5e292d88-2390-4cf2-9762-eb4c63cf0a07","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"41f6992a-402b-4597-972b-b0cc84dd963b","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"de60030e-fd92-412a-9409-eed862df923e","keyword":"光电催化","originalKeyword":"光电催化"},{"id":"05e5836a-627d-4695-9d05-9890e61c0fbd","keyword":"可见光","originalKeyword":"可见光"},{"id":"8daa1171-a372-491f-8fbf-f0b27cba1ba1","keyword":"甲基橙","originalKeyword":"甲基橙"},{"id":"f054df8d-7796-4839-8adb-bd7beb942272","keyword":"降解","originalKeyword":"降解"}],"language":"zh","publisherId":"cuihuaxb201208023","title":"Fe2O3/TiO2纳米管的制备及其光电催化降解染料废水性能","volume":"33","year":"2012"},{"abstractinfo":"以304不锈钢(06Cr19Ni10)作为阴极构建海底生物燃料电池装置,研究了该电池对其海水腐蚀的阴极保护作用.自然腐蚀状态下不锈钢电位为-260 mV,阴极保护试样为-340 mV.荧光显微镜(FM)和扫描电镜(SEM)观察结果表明,两组试样的表面微生物附着情况差别不大,阴极保护试样表面腐蚀程度较低.电化学阻抗法及极化曲线测试表明,通电保护试样的阻抗值随时间增加逐渐增大,腐蚀电流密度Ico(m)逐渐减小,保护试样的抗腐蚀能力增强,电池装置对不锈钢阴极起到一定的保护作用.","authors":[{"authorName":"","id":"567f2cae-e033-41fe-a426-5ac353763be0","originalAuthorName":"徐谦"},{"authorName":"付玉彬","id":"da72491c-a009-4ec2-9dac-8cbc5aa9f46c","originalAuthorName":"付玉彬"},{"authorName":"卢志凯","id":"1c44b2fd-5e4b-4feb-a328-abb394565a18","originalAuthorName":"卢志凯"},{"authorName":"刘媛媛","id":"b3da63d9-6d98-449e-bf9d-ed47cf5ded70","originalAuthorName":"刘媛媛"},{"authorName":"张业龙","id":"ed6d8ead-f277-488a-ae4e-d22b6219f9f8","originalAuthorName":"张业龙"}],"doi":"","fpage":"58","id":"b924455a-c19e-4456-9235-10b14b2d6d31","issue":"5","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"9243e74a-3d6f-47d3-8129-85c064d65a9b","keyword":"304不锈钢","originalKeyword":"304不锈钢"},{"id":"2b5da101-301a-4f1a-afb6-b098827f8d8c","keyword":"海底生物燃料电池","originalKeyword":"海底生物燃料电池"},{"id":"a0e11680-eb9e-4565-8cf5-926b3832b770","keyword":"阴极保护","originalKeyword":"阴极保护"},{"id":"6be1d777-de45-47aa-a878-e03f8238922b","keyword":"金属腐蚀","originalKeyword":"金属腐蚀"}],"language":"zh","publisherId":"clkfyyy201205015","title":"海底生物燃料电池中304不锈钢(06Cr19Ni10)阴极腐蚀保护作用研究","volume":"27","year":"2012"},{"abstractinfo":"阳极是限制海底微生物燃料电池输出功率的关键因素,通过改性阳极,可望提高微生物燃料电池性能.本文利用MnSO4氧化还原介体修饰石墨阳极,研究了MnSO4含量对阳极和电池产电性能的影响.结果表明,锰离子可有效加速电子转移,当阳极MnSO4的含量为4%时,阳极性能最好,电池内阻最小,最大输出功率密度为51.64mW/m2,是普通石墨电极的3倍.","authors":[{"authorName":"李魁忠","id":"f7bf256b-e43e-4c1e-bd7c-60c9cc8bd89f","originalAuthorName":"李魁忠"},{"authorName":"付玉彬","id":"00cbec89-e193-437d-8c38-76b695cdef55","originalAuthorName":"付玉彬"},{"authorName":"","id":"6903bd0f-3f4d-4664-9ce4-7d7b34e38237","originalAuthorName":"徐谦"},{"authorName":"赵仲凯","id":"0ec58ada-83a8-4c40-9ed3-58215a36506d","originalAuthorName":"赵仲凯"},{"authorName":"刘佳","id":"100eea43-5f8d-414c-9c78-367093955429","originalAuthorName":"刘佳"}],"doi":"10.3969/j.issn.1003-1545.2011.03.013","fpage":"46","id":"fb346ef3-1121-485b-ac8c-3f00ad5a2ebc","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"5b8e1ee7-abac-4f42-a653-9c253e1eac9b","keyword":"海底微生物燃料电池","originalKeyword":"海底微生物燃料电池"},{"id":"3f500645-2e44-48c7-8aa5-0e1d73dda4a4","keyword":"阳极改性","originalKeyword":"阳极改性"},{"id":"fcb454be-e387-4435-8341-b1b1ca422c15","keyword":"锰盐氧化还原介体","originalKeyword":"锰盐氧化还原介体"},{"id":"aae2fb47-8763-4070-90c7-1b2433d39241","keyword":"电池产电性能","originalKeyword":"电池产电性能"}],"language":"zh","publisherId":"clkfyyy201103013","title":"海底微生物燃料电池阳极锰盐改性及产电性能研究","volume":"26","year":"2011"},{"abstractinfo":"本文分析了现有的MOCVD反应器存在的不足,提出了一种新型的反向流动垂直喷淋式反应器:反应气体从基片上方的许多平行小喷管喷入反应区,反应后的尾气又从基片上方出口排出,从而减少了反应物浓度沿衬底径向的不均匀性.通过对反应器进行三维数值模拟,改变喷管的中心距、喷管端与衬底的距离、流量、气体压强等参数,确定了反应室内衬底上方温度场与浓度场为最佳时的参数组合.","authors":[{"authorName":"","id":"38421947-95d1-4137-8bb2-6954b28bd72d","originalAuthorName":"徐谦"},{"authorName":"左然","id":"61ce0008-fd57-449b-ad70-a7c8a5e66db3","originalAuthorName":"左然"},{"authorName":"张红","id":"b6ec8b1b-a68b-40ab-b3d8-c870ed39312e","originalAuthorName":"张红"}],"doi":"10.3969/j.issn.1000-985X.2005.06.016","fpage":"1059","id":"b0084de7-a886-4194-9554-2580650b5868","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"2acb59b5-838f-4659-a9e8-11103f96658e","keyword":"反向流动","originalKeyword":"反向流动"},{"id":"ec80dc29-21da-4f78-99e7-c04298e96aee","keyword":"MOCVD","originalKeyword":"MOCVD"},{"id":"199a2170-0df2-4a40-a7c8-6b8f43785e80","keyword":"反应器设计","originalKeyword":"反应器设计"},{"id":"8ef234c3-401d-455d-966e-6070aefa062c","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"rgjtxb98200506016","title":"反向流动垂直喷淋式MOCVD反应器设计与数值模拟","volume":"34","year":"2005"}],"totalpage":9,"totalrecord":83}