{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在碳酸氢钙(Ca(HCO3)2)的分解过程中,通过温度和聚乙二醇(PEG)成功地控制了碳酸钙(CaCO3)的晶型和形貌.用XRD和SEM对制得的CaCO3的晶体类型和颗粒形貌进行表征,结果显示在不添加PEG的情况下,可以观察到菱面体方解石、层状球霰石、棒状及针状的文石.在所有样品中主晶相都是方解石,其含量随温度升高而增多,而球霰石和文石则随温度升高而减少.考察了分解温度为80℃时,添加不同分子量的PEG对CaCO3的晶体类型和颗粒形貌的影响.当反应体系中加入PEG-2000时,方解石仍是主要的晶型,但含量明显减少,文石相增加到39.2%;而加入PEG-6000时,方解石相明显减少,文石相增加到79.3%.这些结果表明:在Ca(HCO3)2分解过程中,温度和PEG可以调控CaCO3的晶型和形貌.","authors":[{"authorName":"许冬东","id":"59640475-ef40-421c-8430-8ac30a4b048f","originalAuthorName":"许冬东"},{"authorName":"朱仕鹏","id":"66825391-e160-4c8f-aa9b-7541e34e9525","originalAuthorName":"朱仕鹏"},{"authorName":"甘鑫鹏","id":"ba9e12a6-df79-4aa5-8218-5e42e90009a7","originalAuthorName":"甘鑫鹏"},{"authorName":"张盈","id":"cbfe37b6-05a4-4424-8a36-fc60c5e8da84","originalAuthorName":"张盈"},{"authorName":"蒋久信","id":"2dd19c7c-74d6-481b-9d08-a4eeac4fb34c","originalAuthorName":"蒋久信"}],"doi":"","fpage":"2409","id":"1dd97afc-04e3-4ed7-826a-d853d34a52c1","issue":"8","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"62d3464a-9114-4b4c-a678-dd033d0f28e2","keyword":"CaCO3","originalKeyword":"CaCO3"},{"id":"519e04d7-694e-43b0-aeba-946abe538575","keyword":"Ca(HCO3)2分解","originalKeyword":"Ca(HCO3)2分解"},{"id":"eaaa8e5c-2cab-4c82-a82e-bc74cad96d3b","keyword":"晶型","originalKeyword":"晶型"},{"id":"51a7c7f7-1769-42c3-900d-6fdd6a86d56e","keyword":"形貌","originalKeyword":"形貌"},{"id":"fcb178b2-94ca-47c7-8f77-c0cf1f50203d","keyword":"PEG","originalKeyword":"PEG"}],"language":"zh","publisherId":"gsytb201508060","title":"温度和添加剂对Ca(HCO3)2分解制备CaCO3的影响","volume":"34","year":"2015"},{"abstractinfo":"研究了20#钢半浸在65℃,通入0.1MPa压力的CO2气体,含两种K值(K-Ca^2+/HCO3^-)的模拟油气田产出水中,以及悬挂在该产出水气相中的腐蚀行为。结果表明,在K值为193(高K值)下的平均腐蚀速率小于在K值为87(低K值)下的平均速率,而高K值下的局部扩展速率高于低K值下的局部扩展速率,表明K值是影响CO2腐蚀的重要参数之一。","authors":[{"authorName":"杜新燕","id":"7e085072-5750-469e-b18f-57decad08637","originalAuthorName":"杜新燕"},{"authorName":"黄淑菊","id":"75f587ad-e87f-4428-beb0-6e7afc8caaa0","originalAuthorName":"黄淑菊"},{"authorName":"武博","id":"7a91db67-f4f8-4975-8ac2-65ea8771c7de","originalAuthorName":"武博"},{"authorName":"张建勋","id":"9031d4f8-7202-4c39-9caa-36f0a2011787","originalAuthorName":"张建勋"}],"doi":"","fpage":"634","id":"d7ad0901-a9d3-422c-91c0-b5fb14aff1bd","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"237d2c50-2ace-4490-b19e-1b2ec86c5f28","keyword":"20#钢","originalKeyword":"20#钢"},{"id":"083b8b86-886e-42fd-b3c7-8d0b4e454b88","keyword":"CO2腐蚀","originalKeyword":"CO2腐蚀"},{"id":"36c19e56-cca7-4764-9b3e-4c05f8c41f61","keyword":"Ca^2+/HCO3比值","originalKeyword":"Ca^2+/HCO3比值"},{"id":"d789044c-4661-49c3-9513-323889ad534a","keyword":"平均腐蚀速率","originalKeyword":"平均腐蚀速率"},{"id":"60dca3ed-c550-4a1d-a0dd-8caa718b71f8","keyword":"局部腐蚀速率","originalKeyword":"局部腐蚀速率"}],"language":"zh","publisherId":"fsyfh201108012","title":"Ca^2+/HCO3^-比值对CO2腐蚀的影响","volume":"32","year":"2011"},{"abstractinfo":"骨料部分采用60%的锆酸钙颗粒(粒度≤0.374 mm和≤0.147 mm),基质部分采用30%的α-Al2O3微粉和10%的含SiO2添加剂(分别为硅灰石、熔融石英、锆英石及其复合物),成型、干燥后于1550 ℃ 3 h烧成,然后对烧后试样进行了扫描电镜、XRD分析,并借助相图对CaZrO3分解机理从热力学与动力学上进行了研究.研究结果表明:含SiO2添加剂都能促进CaZrO3分解,其扩散传质速度直接决定着CaZrO3分解程度,硅灰石(CaSiO3)及其复合添加剂由于在与CaZrO3的反应中生成较大量的液相而使其传质速度加快,从而使CaZrO3分解的程度变大,其中以CaSiO3-SiO2复合添加剂的促进CaZrO3分解程度最大.","authors":[{"authorName":"尹国祥","id":"359e797f-e84a-4964-b0f8-469b309d48c1","originalAuthorName":"尹国祥"},{"authorName":"杨红","id":"8a0dd659-0ce7-4a88-94c3-ddb705f44f0b","originalAuthorName":"杨红"},{"authorName":"孙加林","id":"cbd888c6-2705-4f7f-94fb-b345895ac5ec","originalAuthorName":"孙加林"}],"doi":"10.3969/j.issn.1001-1935.2006.06.007","fpage":"426","id":"59ed1612-79cb-40e8-aafb-40a207d15cf9","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"70828967-27bf-42f5-93f1-c845ab0f4120","keyword":"含SiO2添加剂","originalKeyword":"含SiO2添加剂"},{"id":"d35abf93-9dc1-4f3d-94b3-be8421cb04c8","keyword":"锆酸钙分解","originalKeyword":"锆酸钙分解"},{"id":"f3cd1f6b-4ace-45bd-97fd-931049be9a67","keyword":"液相扩散","originalKeyword":"液相扩散"},{"id":"4a9f6608-6822-4418-9547-1c93c213ae94","keyword":"硅灰石","originalKeyword":"硅灰石"}],"language":"zh","publisherId":"nhcl200606007","title":"含SiO2添加剂促进CaZrO3分解机理研究","volume":"40","year":"2006"},{"abstractinfo":"以NH4Al(SO4)2和NH4HCO3为主要原料,采用均相沉淀法制备纳米Al2O3前驱体NH4AlO(OH)HCO3(AACH),研究了滴定速率对其制备的影响.结果表明:将硫酸铝铵溶液滴入剧烈搅拌的碳酸氢铵溶液中,滴定速率不同,产物的组成和尺寸大小不同.滴定速率较低时,产物为晶化完全、纯净的AACH相,滴定速率较高时,产物中含有极少γ-AlOOH,而且滴定速率越低,所得前驱体尺寸越小.","authors":[{"authorName":"毕见强","id":"a3aa62d6-e3e2-4386-b642-ef87783b9a83","originalAuthorName":"毕见强"},{"authorName":"吴敬华","id":"66376ff0-a659-4173-be75-9493a0ef0d00","originalAuthorName":"吴敬华"},{"authorName":"孙康宁","id":"b8672e80-ac7f-4f44-86bc-933b802b2c26","originalAuthorName":"孙康宁"}],"doi":"","fpage":"636","id":"a1345d71-6f8e-45ad-9f63-01600e7b9334","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"53610802-f166-4b28-8db8-bb378061774b","keyword":"碳酸铝铵","originalKeyword":"碳酸铝铵"},{"id":"0645d8f5-01f1-4a38-84a2-098746c0bd51","keyword":"前驱体","originalKeyword":"前驱体"},{"id":"571a6f9a-ec7c-429a-ad11-b2fde7c44373","keyword":"滴定速率","originalKeyword":"滴定速率"},{"id":"35680b15-8851-41f9-87be-71b981bd9243","keyword":"纳米","originalKeyword":"纳米"}],"language":"zh","publisherId":"gncl200704037","title":"滴定速率对制备纳米NH4AlO(OH)HCO3的影响","volume":"38","year":"2007"},{"abstractinfo":"运用CFX模拟分解炉模型内的流动、煤粉燃烧、CaCO3分解过程,对系统进行气体组分质量平衡和热量平衡计算,结果表明:O2的相对误差<3%,CO2的相对误差<9%,热量的相对误差<9%,表明用CFX模拟分解炉时的可靠性达90%以上;当计算参数如CaCO3量或煤粉量变化0.01%时,炉内温度分布、出口温度、CaCO3分解率等变量几乎没有变化,而当计算参数的变化量大于0.01%时,计算结果就看出变化,即CFX的模拟计算结果响应这两个计算参数变化的灵敏度可达到近万之一。","authors":[{"authorName":"罗桥","id":"6e617394-a83a-4ee8-a0db-48991e51d422","originalAuthorName":"罗桥"},{"authorName":"叶旭初","id":"558aac7c-7040-4915-8de0-53e1a8df0dd7","originalAuthorName":"叶旭初"},{"authorName":"柏杨","id":"4b3bfbe0-93e0-4b2e-8566-67bdc209af71","originalAuthorName":"柏杨"},{"authorName":"李德","id":"b6302ec0-db60-40c9-b4a1-c68330c4ecaf","originalAuthorName":"李德"}],"doi":"","fpage":"144","id":"80215385-834c-4afb-b9f3-4f8fcbd2fd3c","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"76847d0b-6dc8-4b48-9898-d6281dcf4c65","keyword":"CFX","originalKeyword":"CFX"},{"id":"1dd67b68-3ed3-465a-8dca-ea92a5065734","keyword":"碳酸钙分解","originalKeyword":"碳酸钙分解"},{"id":"ce2077d5-9a8a-4dc3-9991-fe02e89cfc74","keyword":"分解炉","originalKeyword":"分解炉"},{"id":"a67f9fed-f26a-46f0-b55e-8a8865fb1adc","keyword":"模拟","originalKeyword":"模拟"}],"language":"zh","publisherId":"gsytb201701025","title":"CFX模拟分解炉内CaCO3分解反应的研究","volume":"36","year":"2017"},{"abstractinfo":"研究了以三甲基镓(TMGa)和氨(NH3)为气源物质,以氢气(H2)为载气进行GaN半导体的金属有机物气相外延(MOVPE)生长时,NH3分解率对于GaN半导体外延生长的成分空间的影响.热力学计算结果表明:随着NH3分解率的提高,用于生长GaN外延层的气+固两相区逐渐向高Ⅴ/Ⅲ比方向变小,解释了实际生长过程中Ⅴ/Ⅲ比要求很高的原因.预计高的Ⅴ/Ⅲ比及低的NH3分解率有助于GaN的MOVPE外延生长.","authors":[{"authorName":"李长荣","id":"0a57c9df-1a80-49c8-8b81-bf15d7c588e8","originalAuthorName":"李长荣"},{"authorName":"卢琳","id":"0df76a73-844f-45b4-a819-a57cbd7abd53","originalAuthorName":"卢琳"},{"authorName":"杜振民","id":"15c0f122-ff89-45ac-88f0-1705c0664872","originalAuthorName":"杜振民"},{"authorName":"张维敬","id":"27fffec2-39b0-41b0-bad2-4298869db8c2","originalAuthorName":"张维敬"}],"doi":"10.3969/j.issn.0258-7076.2002.04.001","fpage":"241","id":"e371f695-d2df-4f2c-b54d-b46e421ce054","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"61ec4fb7-7378-4c3c-9ef5-67567f07547a","keyword":"热力学分析","originalKeyword":"热力学分析"},{"id":"199b6a88-bfe9-4e3a-b647-e2d430409444","keyword":"氮化镓","originalKeyword":"氮化镓"},{"id":"bf45995e-c276-40b2-958b-517b65ed1a6c","keyword":"MOVPE","originalKeyword":"MOVPE"}],"language":"zh","publisherId":"xyjs200204001","title":"NH3分解率对GaN半导体MOVPE外延生长成分空间的影响","volume":"26","year":"2002"},{"abstractinfo":"VO2是一种温感相变材料,68℃左右它从低温半导体相向高温金属相转变,同时其光学和电学性质发生突变.由于V与O之间可以形成任意化学配比的VxOy,,所以纯VO2的制备过程复杂难以控制.采用单一原料NH4VO3,在化学计量反应计算的基础上将其装入刚玉坩埚,置于特制的高压釜中,升温至1000K,反应60min,自然冷却得蓝黑色VO2样品.利用X射线衍射、扫描电镜和差示扫描量热法对样品进行表征与测试.结果表明,所制备的样品为VO2多晶粉末.粒度为几至几十微米,具有相变特性.相变温度为343.53K,相变过程是吸热过程,相变焓为43.75J/g.目前,该方法是合成VO2研究中最简单易行的方法.","authors":[{"authorName":"齐济","id":"b2c13d54-73bb-4c77-9da5-805af0067de0","originalAuthorName":"齐济"},{"authorName":"宁桂玲","id":"2daab210-5ab9-482e-b4f6-c055c83d8f18","originalAuthorName":"宁桂玲"},{"authorName":"华瑞年","id":"2592fc13-ed09-408e-9b0a-87449ede6e2b","originalAuthorName":"华瑞年"},{"authorName":"田密霞","id":"b826a7a2-8009-40a1-a372-486878aa89e8","originalAuthorName":"田密霞"}],"doi":"","fpage":"91","id":"e5701bb4-01cb-4ffd-805e-8ce41e5210f3","issue":"16","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5c35eddb-bb01-4946-b684-fc516aba0069","keyword":"二氧化钒合成","originalKeyword":"二氧化钒合成"},{"id":"2a722fcd-3ba7-465d-906d-aa4b9ed1a5d9","keyword":"偏钒酸铵分解","originalKeyword":"偏钒酸铵分解"},{"id":"c12eac9a-3947-40a4-8d61-0ae4b11a92f7","keyword":"晶相结构","originalKeyword":"晶相结构"},{"id":"0278d5d6-b0b6-4dbf-94d7-990fd71af60a","keyword":"相变性质","originalKeyword":"相变性质"}],"language":"zh","publisherId":"cldb201016025","title":"控制NH4VO3分解及产物间反应制备VO2的研究","volume":"24","year":"2010"},{"abstractinfo":"针对制备泡沫铝异型件的熔体路径发泡先驱体二次发泡工艺,对TiH2的氧化处理、变温分解特性、等温分解特性、组织结构进行了研究.研究表明:氧化处理可有效提高发泡剂的开始分解温度,随氧化处理温度的提高,开始分解温度提高;氧化处理后发泡剂的等温分解曲线由低分解平台、快速分解阶段和稳定分解阶段3部分组成,低分解平台随氧化处理温度的提高而延长;400℃/6 h+500℃/1 h+620℃/30 s的处理,可使TiH2分解量较400℃/6 h+500℃/1 h处理时有所提高;TiH2氧化处理后在其表面生成了厚约1.1~1.5 μm的TixOy致密氧化层,TiH2在300~550℃氧化,其物相依次变化为:TiH1.97-TiH1.97+TiO2-TiH1.97+TiO2+T2O-TiH1.97+TiO2+T2O+TiH.","authors":[{"authorName":"左孝青","id":"8d22ee4e-ced1-43ca-8c82-b779eb6c4834","originalAuthorName":"左孝青"},{"authorName":"潘晓亮","id":"5e31c6a5-cfc4-4466-b052-daf79e8027df","originalAuthorName":"潘晓亮"},{"authorName":"寥明顺","id":"77e40663-de38-445b-97d2-7f8ce57a87c0","originalAuthorName":"寥明顺"},{"authorName":"周芸","id":"0748d810-4c24-4667-b2a3-71293b70dcb4","originalAuthorName":"周芸"},{"authorName":"孙加林","id":"b3eb13bc-9e4c-476f-a6ea-e49e9e39998b","originalAuthorName":"孙加林"}],"doi":"10.3969/j.issn.1005-0299.2008.02.016","fpage":"211","id":"82095315-a106-44e6-8223-37ef154e3a4f","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"d0f75420-5a5f-4a5b-81f6-afa50961245a","keyword":"TiH2","originalKeyword":"TiH2"},{"id":"604a4273-8e50-4c14-866e-a9d6b3fe05e9","keyword":"氧化处理","originalKeyword":"氧化处理"},{"id":"8b3dfae3-cf75-404f-802e-c44adc19c3af","keyword":"分解特性","originalKeyword":"分解特性"},{"id":"2dd3e7e6-ff76-46fd-9620-ef7d7c58f50b","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"c61b24a6-246d-4769-9ac9-455726e3040e","keyword":"泡沫铝","originalKeyword":"泡沫铝"},{"id":"efc09834-bc12-4a62-8592-2d5de6866bb4","keyword":"二次发泡","originalKeyword":"二次发泡"}],"language":"zh","publisherId":"clkxygy200802016","title":"氧化处理对TiH2分解特性及组织结构的影响","volume":"16","year":"2008"},{"abstractinfo":"在固定床反应器中,H2O2与Ti-MWW分子筛的接触时间越长,其分解率越高.结果表明,分子筛骨架Ti和其拥有的酸性位是造成H2O2在分子筛上分解的主要原因.非骨架Ti对H2O2分解的影响弱于骨架Ti-H2O2的无效分解直接影响反应物的转化效率.了解H2O2无效分解的原因,有利于设计出高活性钛硅分子筛.同时在固定床中研究钛硅分子筛催化分解H2O2的反应有可能成为一种评价钛硅分子筛催化活性的新方法.","authors":[{"authorName":"姚明恺","id":"5ff322e9-b2a2-4912-82f3-373825a2cd1e","originalAuthorName":"姚明恺"},{"authorName":"杨俊霞","id":"2dc28c8c-0312-4b96-b0b8-6be722601128","originalAuthorName":"杨俊霞"},{"authorName":"赵松","id":"434ea467-1ea3-4c59-89c9-8dbe013c3745","originalAuthorName":"赵松"},{"authorName":"刘月明","id":"be9efbc1-d9ef-43b5-a0a2-18607867655f","originalAuthorName":"刘月明"},{"authorName":"吴鹏","id":"eb69fd7c-6479-43ea-8e5e-c42060815e5c","originalAuthorName":"吴鹏"}],"doi":"","fpage":"590","id":"d8bff831-d3e7-4770-a65f-c802812b6cd5","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"b9200673-da33-4063-b95c-aa7644fdfe0c","keyword":"钛硅分子筛","originalKeyword":"钛硅分子筛"},{"id":"6f7f0f69-06f1-4bea-b21b-995b0784d6f1","keyword":"Ti-MWW","originalKeyword":"Ti-MWW"},{"id":"4c248e8b-31b8-45f8-baf2-4b1f7fe53b54","keyword":"过氧化氢","originalKeyword":"过氧化氢"},{"id":"b17560c3-46e8-4bfb-9f98-d7d66a4b0236","keyword":"催化","originalKeyword":"催化"},{"id":"d8621795-d939-43b8-bd38-868081cd8ef6","keyword":"固定床反应器","originalKeyword":"固定床反应器"}],"language":"zh","publisherId":"cuihuaxb200907002","title":"固定床反应器中Ti-MWW催化H2O2分解","volume":"30","year":"2009"},{"abstractinfo":"采用同步X射线衍射、扫描电镜及颗粒度分析研究了NaAlH4分解后的加氢过程.结果表明,催化剂Ti不仅可以降低NaAlH4的分解温度,也可以将Na3AlH6的分解温度从250℃降至160℃左右.NaAlH4分解后的加氢反应理论上是可逆的,但由于分解后的产物NaH和Al相互分离,尤其是由于聚集所形成的Al颗粒过大,造成Na3AlH6不能全部转变成NaAlH4.这也是导致在随后的吸、放氢循环过程中有效贮氢量降低的原因.进一步的实验表明,当聚集的Al颗粒平均尺寸大于2.3 μm时,便不利于加氢过程的完全进行.","authors":[{"authorName":"方方","id":"66909aff-d937-4528-a05e-92edcdd9d315","originalAuthorName":"方方"},{"authorName":"张晶","id":"c5a2e316-299a-4e23-8358-9f8b66478d0b","originalAuthorName":"张晶"},{"authorName":"朱健","id":"7c8a7856-46df-4c7b-bb63-f14548dd2dc4","originalAuthorName":"朱健"},{"authorName":"陈国荣","id":"32decbe0-2991-448e-8b1a-2a579ab7d3d0","originalAuthorName":"陈国荣"},{"authorName":"孙大林","id":"6660eb23-bb98-4672-a813-6437f1020d70","originalAuthorName":"孙大林"},{"authorName":"C. M. Jensen","id":"71331f56-d2c2-414d-bc0c-82690c0d9804","originalAuthorName":"C. M. Jensen"}],"doi":"10.3321/j.issn:0412-1961.2007.01.018","fpage":"96","id":"4d05819a-1eb4-4334-b911-bbf0ec852052","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f2eb7d81-4ffb-4226-8024-ce5d1fa16adb","keyword":"贮氢材料","originalKeyword":"贮氢材料"},{"id":"bddc8c9d-2941-4431-a9de-1fb532b0802a","keyword":"NaAlH4","originalKeyword":"NaAlH4"},{"id":"963a4d31-bb80-42ee-91c3-b743d9050e3f","keyword":"加氢反应","originalKeyword":"加氢反应"}],"language":"zh","publisherId":"jsxb200701018","title":"NaAlH4分解后的加氢过程","volume":"43","year":"2007"}],"totalpage":10931,"totalrecord":109307}