{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过金相、透射电镜、XRD分析及应力测试,对T250马氏体时效钢旋压薄壁圆筒时效后的变形进行研究。结果表明时效后板条马氏体的基体中弥散析出强化相,位错密度下降,残余应力有所消除,同时有少量逆变奥氏体生成。时效引起的应力消除是薄壁圆筒径缩的主要原因,位错密度的下降,逆变奥氏体及析出相也对变形有明显影响。","authors":[{"authorName":"赵斌","id":"b664702f-d8dc-4a06-b146-fd271c8c2330","originalAuthorName":"范赵斌"},{"authorName":"韩冬","id":"50120c1e-77cc-4551-a5a4-30b8fb656004","originalAuthorName":"韩冬"},{"authorName":"段述苍","id":"e35e6dca-2ba8-4d53-8e38-eb2a192e47b4","originalAuthorName":"段述苍"},{"authorName":"伍燕","id":"c741afab-9bb5-4032-a292-4cfed8e21d27","originalAuthorName":"伍燕"},{"authorName":"韩京霖","id":"f61363f5-5465-46fc-ae25-d99c9ea9a16a","originalAuthorName":"韩京霖"}],"doi":"","fpage":"954","id":"a5714cbd-eb76-4aa3-8c0e-51530ba928e8","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"d66219cc-03f9-4a84-bdd3-9e9df54cd615","keyword":"T250马氏体时效钢","originalKeyword":"T250马氏体时效钢"},{"id":"2b2c0112-d74a-46a1-a09d-61ade09910b5","keyword":"时效","originalKeyword":"时效"},{"id":"e1fb7f8f-dc1b-49e3-924d-3b670a95987c","keyword":"应力","originalKeyword":"应力"},{"id":"0fb76710-04b4-40e5-972e-345a1b5310f2","keyword":"变形","originalKeyword":"变形"}],"language":"zh","publisherId":"clkxygc201106031","title":"T250马氏体时效钢旋压薄壁圆筒变形","volume":"29","year":"2011"},{"abstractinfo":"庄金银多金属矿床位于熊耳山西段,通过对矿床地质特征及化探异常研究,认为本区金银矿脉分布具有分带性,且与异常分布相吻合,受区内拆离断层和北东向脆性断裂控制,矿床类型为构造蚀变岩型矿床,并对区内找矿标志进行了总结,对区内找矿潜力进行了分析。","authors":[{"authorName":"王宏运","id":"cb6f0486-e88e-4ffc-ada1-612027c1bf3d","originalAuthorName":"王宏运"}],"doi":"10.11792/hj20150804","fpage":"18","id":"e985b485-bec5-4d53-9ff4-76ed095e1536","issue":"8","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"5c47ff4e-7c89-4064-91a0-a2195554c193","keyword":"矿床特征","originalKeyword":"矿床特征"},{"id":"77755bca-5957-4677-8c4b-91a7f6253919","keyword":"化探异常","originalKeyword":"化探异常"},{"id":"024c6b84-ff42-425e-85e2-1dbc149c7251","keyword":"金银矿床","originalKeyword":"金银矿床"},{"id":"cdd75c70-b4eb-46d2-a754-94bacac5349c","keyword":"找矿标志","originalKeyword":"找矿标志"},{"id":"af0438d0-15d2-4d9a-aa84-2292140490ef","keyword":"找矿潜力","originalKeyword":"找矿潜力"},{"id":"e4802e29-f15f-4851-8196-299281542751","keyword":"庄金银多金属矿床","originalKeyword":"范庄金银多金属矿床"}],"language":"zh","publisherId":"huangj201508006","title":"洛宁庄金银多金属矿床地质特征及找矿潜力分析","volume":"","year":"2015"},{"abstractinfo":"利用逐步回归分析的方法,确定了40MnBH钢的淬透性与化学成分之间的回归方程,以便分析化学成分对淬透性的影响程度,并应用概率论推导出求解成分内控规范的联立方程,使淬透性合格概率大于97.5%.","authors":[{"authorName":"张海","id":"da88e202-5464-49a6-880a-0a7c077f69ba","originalAuthorName":"张海"},{"authorName":"于辉","id":"6939212b-88bd-4505-8c43-d61130c16022","originalAuthorName":"于辉"},{"authorName":"姚风臣","id":"03bad0cf-522a-43fb-a66d-8a38a782d024","originalAuthorName":"姚风臣"},{"authorName":"刘德富","id":"1e1a7b85-ef86-4c90-9c44-621abf895500","originalAuthorName":"刘德富"}],"doi":"10.3969/j.issn.1000-3738.2001.06.005","fpage":"15","id":"07638a12-2aab-4883-bdd7-cb5c7ca61fc2","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"90626f1d-edc0-482a-89c9-14201f07dfa2","keyword":"逐步回归","originalKeyword":"逐步回归"},{"id":"0fad2e06-d7b3-460e-91c7-b46e5929dc4d","keyword":"淬透性","originalKeyword":"淬透性"},{"id":"f419a8a8-c285-440b-8c54-1e08ad9f99ea","keyword":"联立方程","originalKeyword":"联立方程"},{"id":"441277b0-b77c-41de-895b-4a95608faf3a","keyword":"概率","originalKeyword":"概率"}],"language":"zh","publisherId":"jxgccl200106005","title":"40MnBH的研究","volume":"25","year":"2001"},{"abstractinfo":"","authors":[],"doi":"","fpage":"16","id":"9aee0c19-b441-45ef-86ee-595d2130c03c","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"53057b4d-208c-4bb4-abb8-06a51caa4f4a","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"clbh199903031","title":"四平师学院科技开发中心系列化学镀镍产品介绍","volume":"32","year":"1999"},{"abstractinfo":"","authors":[],"doi":"","fpage":"6","id":"d9e15af3-593a-4247-ad97-dac7c54e8179","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"559112dd-8f38-4c8c-a60f-2922ca9c125c","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"clbh200007032","title":"四平师学院科技开发中心系列化学镀镍产品介绍","volume":"32","year":"2000"},{"abstractinfo":"本文从实际气体有粘流的激波厚度解,用分子运动论讨论了激波内部导热问题,并且通过重组诺流和瑞利流的迭加提出了激波中导热问题的物理模型和相应的定态激波非平衡态不可逆过程的模型.证明了激波是一种负熵流波,是依靠激波波速输运热流的热波.","authors":[{"authorName":"黄为民","id":"4e4669b1-c089-4652-ad92-b74164dff720","originalAuthorName":"黄为民"},{"authorName":"刘夷平","id":"a890497f-ecf4-49df-b5c4-e2fa150441d5","originalAuthorName":"刘夷平"}],"doi":"","fpage":"643","id":"dc7e1bc4-74f0-4b2b-943d-1bf785e5e606","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4890bc97-be23-43c7-a915-47c4d3b064f6","keyword":"激波","originalKeyword":"激波"},{"id":"f15e33a9-b11a-4348-9231-19b71f7fc115","keyword":"导热","originalKeyword":"导热"},{"id":"47f5b891-956f-4ab9-bede-c09f1e578a01","keyword":"不可逆","originalKeyword":"不可逆"},{"id":"e5db1878-10d9-40db-adf1-55a821d84db3","keyword":"非平衡态","originalKeyword":"非平衡态"},{"id":"a6d04897-51eb-470f-96d6-13a5746fced7","keyword":"热波","originalKeyword":"热波"}],"language":"zh","publisherId":"gcrwlxb200304029","title":"激波内部的导热问题","volume":"24","year":"2003"},{"abstractinfo":"采用德堡法分别在77K和室温下对多个Hg1-xMnxTe晶片的电学性能进行了测量,发现部分晶片在77K下的导电类型为p型,而在室温下却为n型.通过理论分析对此现象进行了解释.分析表明:Hg1-xMnxTe晶片中电子迁移率与空穴迁移率的比值较大和Hg1-xMnxTe的禁带较窄是造成晶片导电类型转变的主要原因.对所测其它电学参数的理论分析表明德堡法不适合用于Hg1-xMnxTe晶片室温时的载流子浓度和迁移率的测量,但仍可用其对晶片室温时的电阻率和霍尔系数进行测量.","authors":[{"authorName":"王泽温","id":"8f1d2633-7ca9-4a50-9b68-063770816e16","originalAuthorName":"王泽温"},{"authorName":"介万奇","id":"8fecaec2-9b38-4078-a768-469cf4db28d6","originalAuthorName":"介万奇"},{"authorName":"李宇杰","id":"840f465a-ede1-4dda-852d-4391f24fafe4","originalAuthorName":"李宇杰"},{"authorName":"谷智","id":"d4a2e514-78d2-4ca5-bb72-b0ef054ddf91","originalAuthorName":"谷智"}],"doi":"","fpage":"1232","id":"82ef88af-b2a3-4f84-b3a3-52385dafe319","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"40a020b1-2124-4879-be7d-dab63bde41d4","keyword":"Hg1-xMnxTe","originalKeyword":"Hg1-xMnxTe"},{"id":"d0fca267-eee3-4b5c-8e16-f2755840eeb1","keyword":"德堡法","originalKeyword":"范德堡法"},{"id":"ee911d84-420d-4b9d-967f-2d51aeef318a","keyword":"导电类型","originalKeyword":"导电类型"},{"id":"a58b0a4f-dcd3-415c-8727-180d537a4c4e","keyword":"霍尔系数","originalKeyword":"霍尔系数"}],"language":"zh","publisherId":"gncl200608015","title":"Hg1-xMnxTe晶片电学参数的测量及分析","volume":"37","year":"2006"},{"abstractinfo":"二维材料由于存在“膜效应”,即在垂直于薄膜方向的热涨落,使得沿着二维薄膜面内方向出现反常的负热膨胀现象.这种热效应对薄膜的稳定性及电子性质可产生重要影响.基于第一性原理计算和准谐近似,系统地研究了二维单层石墨烯、h-BN和石墨烯/h-BN异质结构的电子、声子以及热膨胀性质,计算了3种结构不同振动模式的格林奈森参数,讨论了引起这3种结构负热膨胀的振动模式.计算表明,由于垂直薄膜方向的热振动,石墨烯和h-BN在薄膜面内均具有较大的负热膨胀系数;它们形成的异质结构依靠弱的德瓦尔斯相互作用结合在一起,这种层间弱相互作用对薄膜垂直方向的热振动产生影响,使得形成的异质结构的负膨胀系数介于石墨烯和h-BN之间.通过分析异质结构的振动模式,发现引起面内热收缩的ZA振动模式受到了层间德瓦尔斯相互作用影响,导致异质结构的负热膨胀系数大于石墨烯而小于h-BN.研究表明,可以在实验中通过德瓦尔斯相互作用来改变层状结构材料的负热膨胀性质,从而提高薄膜材料结构和电子性质的热稳定性.","authors":[{"authorName":"武明义","id":"6cdf7682-96cc-4aa6-9bd2-1b050b1b0301","originalAuthorName":"武明义"},{"authorName":"孙强","id":"260f3b31-d758-4e20-8657-1682b77c834c","originalAuthorName":"孙强"},{"authorName":"贾瑜","id":"b4457ad3-869c-4e2a-a0cf-c6045be73437","originalAuthorName":"贾瑜"},{"authorName":"梁二军","id":"1bf7d1d1-9c28-4632-867e-5ff2115f2ba9","originalAuthorName":"梁二军"}],"doi":"10.7502/j.issn.1674-3962.2015.07.04","fpage":"515","id":"3d3c6eeb-331b-4eca-a12a-cd4b48b41508","issue":"7","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"7fbea3d5-bb05-417d-ae52-94858461c347","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"f342a051-4811-4b35-a9fa-b7e0f96274d6","keyword":"h-BN","originalKeyword":"h-BN"},{"id":"2f9b0be2-5fb4-4752-a520-38d5d660ce7f","keyword":"负热膨胀","originalKeyword":"负热膨胀"},{"id":"e0d5a26d-4967-4229-ae38-02737eb4d873","keyword":"格林奈森参数","originalKeyword":"格林奈森参数"},{"id":"fe1d0e1d-50a8-40c6-8271-307ced5763fa","keyword":"德瓦尔斯相互作用","originalKeyword":"范德瓦尔斯相互作用"}],"language":"zh","publisherId":"zgcljz201507004","title":"二维石墨烯/h-BN异质结构负热膨胀性质的理论研究","volume":"34","year":"2015"},{"abstractinfo":"用离散变分密度泛函分子轨道方法(DFT-DVM)和线性扩展平面波能带方法(LAPW)计算了Bi2Te3与SnBi2Te4,讨论了电子结构与热电性能之间的关系.Te(Ⅱ)-Bi离子键强度和Te(Ⅰ)-Bi差别不大,而Te(Ⅱ)-Bi共价键比Te(Ⅰ)-Bi强.Te(Ⅰ)-Te(Ⅰ)原子层之间的主要相互作用是得华力而最弱.Bi2Te3掺Sn后Te-Bi离子键增强而共价键减弱,且费米能级处带隙变小.Sn主要影响导带结构.","authors":[{"authorName":"闵新民","id":"6ac48663-6bf8-41d8-ab74-592699163cb9","originalAuthorName":"闵新民"},{"authorName":"朱磊","id":"ff6bcacb-d056-4da8-af71-5ba480ebf08a","originalAuthorName":"朱磊"},{"authorName":"邢学玲","id":"1f5d48f2-21da-47f6-8374-69587d2aa996","originalAuthorName":"邢学玲"}],"doi":"","fpage":"1156","id":"3713a9b4-7bb0-4c58-a3b8-932d0f16a34a","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"04933830-0331-49e3-a899-04250814c68c","keyword":"碲化铋","originalKeyword":"碲化铋"},{"id":"2c542e91-aa80-4611-8eb9-9da206494c70","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"901da89e-ce95-4168-8621-98947c755eea","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"4b215f2c-06a9-4be0-8b7d-5bf2c34cbc88","keyword":"热电性能","originalKeyword":"热电性能"}],"language":"zh","publisherId":"gncl2004z1325","title":"Bi2Te3与SnBi2Te4的电子结构与热电性能研究","volume":"35","year":"2004"},{"abstractinfo":"研究了以氯化亚铜/乙二胺/苄氯体系引发苯乙烯聚合反应,可以得到数均分子量高达2.3×105,分子量分布窄(MWD<1.6)的聚合产物.在聚合反应时间6 h左右聚合转化率可以高达90%,在聚合温度90℃~120 C国内,聚合物分子量分布均小于1.63;测定聚合反应动力学方程为Rp=kp·[M]·[Y]1/2,聚合反应表现活化能为50.13 kJ/mol.","authors":[{"authorName":"汤建萍","id":"61974937-fde9-4e04-9488-69e538d47a78","originalAuthorName":"汤建萍"},{"authorName":"曾宪标","id":"29377522-f0cd-47ca-8f9e-20cc3391f07c","originalAuthorName":"曾宪标"},{"authorName":"李添宝","id":"388e8206-d699-45bd-aa7c-ba9e3191b3f2","originalAuthorName":"李添宝"}],"doi":"","fpage":"49","id":"58d50cf5-f3b9-4858-85d9-d861c4ab8790","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"db6b15b3-e1dd-4700-ba0b-031da88b9b7a","keyword":"氯化亚铜","originalKeyword":"氯化亚铜"},{"id":"4143cd16-583a-4df7-bd14-cb36730cb0ea","keyword":"乙二胺","originalKeyword":"乙二胺"},{"id":"b0523905-4529-46cc-b67d-d063e772ee9d","keyword":"苄氯","originalKeyword":"苄氯"},{"id":"d9f7ee4d-83cd-4fd5-adb9-341516b4bf85","keyword":"苯乙烯","originalKeyword":"苯乙烯"},{"id":"4210b846-7d4e-4869-bc04-f69f09ad9042","keyword":"聚合反应","originalKeyword":"聚合反应"},{"id":"658f1a70-2b12-412e-9ddf-6c368fcd37c1","keyword":"分子量分布","originalKeyword":"分子量分布"}],"language":"zh","publisherId":"gfzclkxygc200403013","title":"氯化亚铜/乙二胺/苄氯引发苯乙烯聚合","volume":"20","year":"2004"}],"totalpage":6,"totalrecord":54}