{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以合成堇青石(≤0.074 mm)和合成(0.45~0.9 mm)为主要原料,a-Al2O3微粉(≤0.044 mm)、镁砂(≤0.054 mm)和熔融石英(≤0.054 mm)为添加剂,经细磨、造粒、成型后,于1 370℃4 h烧成后制备了石质量分数分别为15%、20%、25%、30%、35%和40%的堇青石-复相陶瓷材料,研究了含量对复相陶瓷材料烧结性能、抗折强度、热膨胀性及抗热震性的影响.结果表明:随着含量的增加,堇青石一复相陶瓷材料的体积密度、显气孔率和热膨胀系数都呈上升趋势,而抗折强度呈降低趋势;适当提高含量有利于复相陶瓷材料的抗热震性,当含量达到30%时,材料的抗热震性最好.","authors":[{"authorName":"白建光","id":"215c9ebb-1cb0-493b-8c88-206b64a6aa77","originalAuthorName":"白建光"},{"authorName":"赵敬忠","id":"046999e3-5abb-4872-9b75-31c862612e12","originalAuthorName":"赵敬忠"}],"doi":"10.3969/j.issn.1001-1935.2008.05.012","fpage":"365","id":"174a1fa8-1c45-4c9d-ace5-bec296273677","issue":"5","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"550c3579-3a7a-48b5-8c40-34ba9e10f152","keyword":"","originalKeyword":"莫来石"},{"id":"32b70cd7-53dd-453c-ad6f-5bbe51fa1a38","keyword":"堇青石","originalKeyword":"堇青石"},{"id":"a9a0de8e-1f3c-468f-91f4-88848d11cb9c","keyword":"复相陶瓷","originalKeyword":"复相陶瓷"},{"id":"82a6a303-a85b-4240-9294-f483dcbc1c22","keyword":"抗热震性","originalKeyword":"抗热震性"}],"language":"zh","publisherId":"nhcl200805012","title":"含量对堇青石-复相陶瓷性能的影响","volume":"42","year":"2008"},{"abstractinfo":"以微米Al2O3和纳米SiO2为原料,添加成型添加剂PVB,制备出了多晶纤维.借助差热-失重分析(DSC-TGA)、X射线衍射(XRD)及扫描电镜(SEM)分别对纤维的固相反应、相组成及表面形貌等进行了研究.DSC-FGA表明,在600℃以下PVB被完全排出,在1200℃左右纳米SiO2发生从非晶质到鳞石英的晶形转变,XRD分析显示1400℃以下没有生成,1500℃生成少量,1500℃到1600℃时,大量生成,纤维完全石化,并从动力学上说明了Al2O3和SiO2是一步反应生成.通过SEM观察,由于PVB的大量挥发,使制得的纤维表面粗糙,脆性增加.","authors":[{"authorName":"张亚彬","id":"63d4e810-d290-44a9-82b2-630ac6b953f0","originalAuthorName":"张亚彬"},{"authorName":"李瑞","id":"caa2234a-ebc1-4f02-8499-07061dc9abb5","originalAuthorName":"李瑞"},{"authorName":"高积强","id":"e0626eb8-105c-4a2d-9aab-282f94216437","originalAuthorName":"高积强"}],"doi":"","fpage":"721","id":"c545d853-8649-4f51-af24-084d1a97ec87","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"0cf7065d-d770-4288-a72b-f184c381e4fd","keyword":"","originalKeyword":"莫来石"},{"id":"1cb0ae8a-3c09-4035-9080-4fbfcf34dd81","keyword":"纤维","originalKeyword":"纤维"},{"id":"320b4f90-4a5f-4641-acfe-0d29eb0450a6","keyword":"工艺","originalKeyword":"工艺"}],"language":"zh","publisherId":"xyjsclygc2008z1189","title":"连续纤维制备工艺","volume":"37","year":"2008"},{"abstractinfo":"本文研究了陶瓷细粉与金属铝复合的摩擦材料,实验证明,石粉对金属铝有明显的增强、增加硬度、提高耐磨性等作用,同时添加石墨、磷酸铝等材料,可进一步改善这种复合材料的其它性能.","authors":[{"authorName":"邹苏阳","id":"fc48f780-402f-4478-ac01-275359dc5c76","originalAuthorName":"邹苏阳"},{"authorName":"徐廷献","id":"bcc184f6-aa75-47d1-9af3-04d4bb333f3c","originalAuthorName":"徐廷献"},{"authorName":"薄占满","id":"0d490fc8-1ca8-4a36-95f1-6328455a348c","originalAuthorName":"薄占满"}],"doi":"10.3969/j.issn.1001-1625.1999.03.001","fpage":"3","id":"f0bd1fee-6712-46f5-8781-7cdd7d4344ad","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"b45ccaee-9a89-4795-bb4b-7daa87614ada","keyword":"摩擦材料","originalKeyword":"摩擦材料"},{"id":"bccb901e-39ff-4a5c-8294-e82fefdb8c52","keyword":"","originalKeyword":"莫来石"},{"id":"ffb73ca7-fbb3-45a3-a46d-0f6eb601d758","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"gsytb199903001","title":"/铝复合摩擦材料","volume":"","year":"1999"},{"abstractinfo":"以硝酸铝和正硅酸乙酯为主要原料,利用Sol-Gel方法制备了粒径分布范围窄的高纯超细粉末.运用DSC、TG、IR、XRD和激光粒度分析等技术对Sol-Gel工艺条件,以及超细粉末进行了分析研究.研究表明,在干凝胶的热处理过程中,非晶态的干凝胶首先转化为硅铝尖晶石,再由硅铝尖晶石转化为相;在1300℃下热处理可获得纯相的超细粉末,其粒径分布在0.4~1.0μm之间,平均粒径为0.54μm.结果表明,采用Sol-Gel方法可以制备出高纯、粒径分布范围窄的超细石粉末.","authors":[{"authorName":"汤涛","id":"98fffd33-1849-4d5f-bcbc-b93c244ea442","originalAuthorName":"汤涛"},{"authorName":"张新涛","id":"a22c39fa-184b-41ac-85c2-10e26e5b1ecc","originalAuthorName":"张新涛"},{"authorName":"张其土","id":"5ddda569-4895-405e-90ce-ce4078226252","originalAuthorName":"张其土"}],"doi":"10.3969/j.issn.1001-1935.2004.03.017","fpage":"193","id":"6c97e4ae-6591-4a72-bddf-cb7e84da40c7","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"17ae5da9-4466-4f31-9ca9-bd675acbb7b9","keyword":"","originalKeyword":"莫来石"},{"id":"7dc6aef5-669a-45e3-a27a-8584fdb00e35","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"57f374ea-f081-485f-9267-67ac8975461f","keyword":"超细粉","originalKeyword":"超细粉"}],"language":"zh","publisherId":"nhcl200403017","title":"超细粉末的制备","volume":"38","year":"2004"},{"abstractinfo":"介绍了低温合成所用的4种起始混合材料:固体混合物、溶胶混合物、硅酸-铝盐混合物、硅醇盐-铝盐混合物或硅醇盐-铝醇盐混合物,总结了用这4种起始混合材料低温合成的原理、过程和特点,并探讨了在耐火材料中应用的可能性.","authors":[{"authorName":"卫晓辉","id":"6e13398f-a5e1-4eac-bc9a-c4c6a500ba2d","originalAuthorName":"卫晓辉"},{"authorName":"孙加林","id":"5b63a74b-88f1-4ed3-acb0-ddcaf86abe41","originalAuthorName":"孙加林"},{"authorName":"孙庚辰","id":"7cefb588-5d46-4085-a290-f8f8864dc2f3","originalAuthorName":"孙庚辰"}],"doi":"10.3969/j.issn.1001-1935.2008.03.018","fpage":"229","id":"00ebba5d-7a4f-49a1-9e92-b6d56a1eb2e3","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"477cf107-85c5-41c2-92be-5a37fa6e6395","keyword":"","originalKeyword":"莫来石"},{"id":"ccc7fb6c-9014-4c7d-a2fb-a588d0769afb","keyword":"低温合成","originalKeyword":"低温合成"},{"id":"44fcc618-59b7-46c8-be51-d5a2fc75bf71","keyword":"起始原料","originalKeyword":"起始原料"}],"language":"zh","publisherId":"nhcl200803018","title":"的低温合成","volume":"42","year":"2008"},{"abstractinfo":"以CaCO3、SiO2、α-Al2O3为原料, 采用泡沫注凝法制备了不同含量的钙长石/复相多孔陶瓷, 研究了含量对复相多孔陶瓷的体积密度、气孔率、抗压强度、热导率及微观组织和结构的影响. 结果表明, 含量对气孔率有很大的影响, 烧结过程中液相出现引起的收缩是气孔率下降的主要原因; 在气孔率相近的情况下, 含量较高试样的抗压强度和热导率也较高, 致密的孔壁、长柱状的晶粒使得复相多孔陶瓷的抗压强度提高. 所制备的钙长石/复相多孔陶瓷的开口气孔率介于60.8%~75.2%, 抗压强度为12.94~36.95 MPa, 热导率为0.30~1.33 W/(m·K).","authors":[{"authorName":"林亚梅","id":"0b684c7b-ac19-4ef9-b019-df7b246ce52e","originalAuthorName":"林亚梅"},{"authorName":"李翠伟","id":"768602d4-2df1-4d85-8bb6-abe496088bc4","originalAuthorName":"李翠伟"},{"authorName":"汪长安","id":"ec1d25f8-1ff7-47ab-8164-d792fc44b4df","originalAuthorName":"汪长安"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.01095","fpage":"1095","id":"fb0a9812-e99e-441d-976b-856efb4e5ede","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"0d5a13a3-db5b-448c-bcf6-cc232f2f276a","keyword":"","originalKeyword":"莫来石"},{"id":"d1aa0a72-672f-4903-b2b8-360ed64ba016","keyword":" anorthite","originalKeyword":" anorthite"},{"id":"9b942df7-8b40-4434-b5cc-541c103db76d","keyword":" porous ceramics","originalKeyword":" porous ceramics"},{"id":"ef6ff651-a63a-4010-9399-a4640f99f884","keyword":" compressive strength","originalKeyword":" compressive strength"},{"id":"379a72e0-f15d-4200-9d7f-02a934bba18c","keyword":" thermal conductivity","originalKeyword":" thermal conductivity"}],"language":"zh","publisherId":"1000-324X_2011_10_4","title":"含量对钙长石/复相多孔陶瓷组织结构与性能的影响","volume":"26","year":"2011"},{"abstractinfo":"以CaCO3、SiO2、α-Al2O3为原料,采用泡沫注凝法制备了不同含量的钙长石/复相多孔陶瓷,研究了含量对复相多孔陶瓷的体积密度、气孔率、抗压强度、热导率及微观组织和结构的影响.结果表明,含量对气孔率有很大的影响,烧结过程中液相出现引起的收缩是气孔率下降的主要原因;在气孔率相近的情况下,含量较高试样的抗压强度和热导率也较高,致密的孔壁、长柱状的晶粒使得复相多孔陶瓷的抗压强度提高.所制备的钙长石/复相多孔陶瓷的开口气孔率介于60.8%~75.2%,抗压强度为12.94~36.95 MPa,热导率为0.30~1.33 W/(m·K).","authors":[{"authorName":"林亚梅","id":"59fb8eb4-6fb0-4057-b3bc-a9261e1e0906","originalAuthorName":"林亚梅"},{"authorName":"李翠伟","id":"c10abf84-3026-4697-9205-a848e84f043c","originalAuthorName":"李翠伟"},{"authorName":"汪长安","id":"a59e6d11-55cf-45a9-baf1-acdce6af9b87","originalAuthorName":"汪长安"}],"doi":"10.3724/SP.J.1077.2011.01095","fpage":"1095","id":"64c07a0e-ae16-4ffd-8df7-82e16ab44329","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"63a04f19-011d-41f6-9866-b6b04009299d","keyword":"","originalKeyword":"莫来石"},{"id":"598bc6bd-5f4a-4ae6-a1ea-c40bc9fd67d7","keyword":"钙长石","originalKeyword":"钙长石"},{"id":"06dc7cc0-cd57-43b3-9ae6-0e4b38b41c0e","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"e6de7596-f21f-42ba-b472-6174e829f66b","keyword":"抗压强度","originalKeyword":"抗压强度"},{"id":"e21020f6-81e0-40eb-8e21-c4966bc9f162","keyword":"热导率","originalKeyword":"热导率"}],"language":"zh","publisherId":"wjclxb201110016","title":"含量对钙长石/复相多孔陶瓷组织结构与性能的影响","volume":"26","year":"2011"},{"abstractinfo":"为探讨能否用纯电瓷废料合成陶瓷,本文对比了以电瓷废料细粉为原料,再添加部分Al2O3细粉和以纯电瓷废料细粉为原料合成陶瓷.探讨了原料配比和烧结温度对合成的陶瓷的结构和性能的影响.采用X射线衍射(XRD)、扫描电镜(SEM)分别研究了的物相组成与显微结构.研究表明:随着烧成温度升高,的含量增加,体积密度增大;由于原料采用电瓷废料细粉,烧结活性较大,有利于烧结的进行,并提高烧结密度;采用纯电瓷废料合成的陶瓷的体积密度和耐压强度最高,气孔率最小,综合性能最优.","authors":[{"authorName":"贺嘉伟","id":"d55ce1c1-5e7d-4e62-b85b-d83f14c7e1af","originalAuthorName":"贺嘉伟"},{"authorName":"马爱琼","id":"a625ae82-afff-4a01-b0a4-4d9dd3269ea9","originalAuthorName":"马爱琼"}],"doi":"10.14136/j.cnki.issn1673-2812.2016.01.024","fpage":"123","id":"75ccbdd7-4d8f-4996-80e7-b0a3ec12826d","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"663223cd-9c8e-4637-b891-1f6993a91f6d","keyword":"电瓷废料","originalKeyword":"电瓷废料"},{"id":"b63316c5-5920-4e2e-bc6d-bc9f4adc350d","keyword":"烧结温度","originalKeyword":"烧结温度"},{"id":"c43d1e9e-9919-4686-870c-fd586834aeae","keyword":"铝硅比","originalKeyword":"铝硅比"},{"id":"1d055536-20ca-4a37-87b6-3313e4762aed","keyword":"","originalKeyword":"莫来石"}],"language":"zh","publisherId":"clkxygc201601024","title":"利用电瓷废料原位合成陶瓷","volume":"34","year":"2016"},{"abstractinfo":"近年来,结构陶瓷和功能陶瓷的兴起,使得高纯的制备成为陶瓷科学研究的热点之一.本文对国内外制备高纯的方法作了简要的评述.","authors":[{"authorName":"罗驹华","id":"2bd2a5c8-9581-493c-bb0b-a19bc1d47670","originalAuthorName":"罗驹华"},{"authorName":"侯贵华","id":"0329217c-43b1-4eff-9905-0c81c9d99b8f","originalAuthorName":"侯贵华"},{"authorName":"张少明","id":"a3a85089-2ad7-431a-82e5-7369fb7af2d6","originalAuthorName":"张少明"}],"doi":"10.3969/j.issn.1673-2812.2002.04.039","fpage":"618","id":"53bbb9fe-4fb3-4e64-a6d5-88ff2f4f5056","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"a86761e5-2b0b-426d-8d52-9c292bbce2c1","keyword":"高纯","originalKeyword":"高纯"},{"id":"bd14b113-58c2-44f0-b595-e60691cba3b4","keyword":"","originalKeyword":"莫来石"},{"id":"71793e0c-456f-43f8-b8cf-3fcbebe513b9","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"clkxygc200204039","title":"高纯制备方法评述","volume":"20","year":"2002"},{"abstractinfo":"以正硅酸乙酯(C8H20O4Si),硝酸铝(Al(NO3)3·9H2O)为主要原料,氨水调节pH值,通过溶胶凝胶法制备出酸碱条件下纯相石粉体.通过热分析得知粉体在升温过程中吸热、放热和晶相转换过程;通过XRD研究了凝胶在热处理过程中的结晶变化;通过红外吸收光谱测定了粉体中Si-O-Al键的存在和变化;通过环境扫描电子显微镜测定研究了石粉末的表面特性.最终得出凝胶转变至的相变过程:酸碱条件下的生成过程都经历了由无定形铝和无定形硅转变为硅铝尖晶石再到的过程;在碱性条件下,开始转变温度低于酸性;同时生成的中,碱性条件比酸性条件粒度小.","authors":[{"authorName":"张跃峰","id":"6f275d47-9fd8-4991-b1c8-9fe5fb611a1e","originalAuthorName":"张跃峰"},{"authorName":"雷新荣","id":"619f69f0-23e8-4f6e-901a-44d96dd156d1","originalAuthorName":"雷新荣"},{"authorName":"陈安忠","id":"60e8ccbe-0f98-4eff-9705-08c4007dd9cc","originalAuthorName":"陈安忠"},{"authorName":"蒋涛","id":"71a2e5a5-b2cd-44d7-9e9b-ab9c3c72ba4e","originalAuthorName":"蒋涛"}],"doi":"","fpage":"904","id":"f70a2159-f035-4eed-bdce-42f23c47f74d","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"bb3b927c-ee93-4515-ba70-278f243c9c91","keyword":"","originalKeyword":"莫来石"},{"id":"e0a7b500-296a-4b0e-87fd-1c60fe84e289","keyword":"酸性","originalKeyword":"酸性"},{"id":"07166373-5da5-492f-b2aa-18f338e1b7e3","keyword":"碱性","originalKeyword":"碱性"},{"id":"e305df67-8e4a-4275-bc3d-28c46144f679","keyword":"形成机理","originalKeyword":"形成机理"}],"language":"zh","publisherId":"gsytb201104032","title":"酸碱条件下形成机理研究","volume":"30","year":"2011"}],"totalpage":820,"totalrecord":8199}