{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"氧化物负载的金属催化剂在学术界和工业界都是研究最为广泛的一类催化剂。本文主要介绍了最近几年关于这方面的代表性研究进展,有望揭示负载型金属催化剂中活性位的本质和所处的位置。","authors":[{"authorName":"王敏","id":"5ceb9b0d-e362-44c3-980f-fd7fb3a80bfa","originalAuthorName":"王敏"},{"authorName":"王峰","id":"6936f8e0-16b0-4a12-ba9d-23fb90cdd310","originalAuthorName":"王峰"}],"doi":"10.1016/S1872-2067(14)60073-5","fpage":"453","id":"8b804769-795e-4cb5-90b1-8a6ee645eed9","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"6bbc5289-e55a-40f0-b8a2-eeff59488d07","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"46468c25-4ec2-4ff9-8185-f8cbac8b3d1b","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"d6f46fb6-7282-403c-9871-e54e806c9373","keyword":"金属载体相互作用","originalKeyword":"金属载体相互作用"},{"id":"6353a985-68da-411a-89ba-618f6c5c8a88","keyword":"周边原子","originalKeyword":"周边原子"},{"id":"bdde3f72-205d-4ad8-9b0c-63d76619c1b1","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"cuihuaxb201404001","title":"氧化物负载的纳米金属催化剂的活性位本质和结构","volume":"","year":"2014"},{"abstractinfo":"金属-载体强相互作用(SMSI)的发生机理及其对催化活性的影响是目前CeO2基三效催化剂研究的热点.介绍了金属-载体强相互作用产生的基本条件及其基本特征,综述了贵金属与CeO2基复合氧化物间SMSI的可能机制及相关研究进展,提出了金属-载体强相互作用可能的研究方向.","authors":[{"authorName":"樊俊","id":"83745472-d3d6-41bf-bf34-dd11629b3520","originalAuthorName":"樊俊"},{"authorName":"翁端","id":"495b9c47-3229-4507-b010-b9772267e778","originalAuthorName":"翁端"},{"authorName":"冉锐","id":"4fd80801-2c25-41e1-b043-8170f23fba3d","originalAuthorName":"冉锐"},{"authorName":"吴晓东","id":"4e8a3e3d-393e-461d-947c-b8ae0483083a","originalAuthorName":"吴晓东"}],"doi":"10.3969/j.issn.1004-0277.2010.05.015","fpage":"70","id":"3f557d18-5a56-4c2d-85c9-fe923d54a735","issue":"5","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"e1c2d8ba-0fcf-4233-98ff-01fa70008624","keyword":"贵金属","originalKeyword":"贵金属"},{"id":"97866200-0efd-4d94-81a8-da89e5c8a444","keyword":"CeO2","originalKeyword":"CeO2"},{"id":"8480e35e-9a2c-4ece-817a-59ffc563acb4","keyword":"三效催化剂","originalKeyword":"三效催化剂"},{"id":"2bf4cc37-8589-4367-b2ae-1dc2e0f41ce5","keyword":"金属-载体强相互作用","originalKeyword":"金属-载体强相互作用"}],"language":"zh","publisherId":"xitu201005015","title":"CeO2基三效催化剂中金属-载体强相互作用的研究进展","volume":"31","year":"2010"},{"abstractinfo":"以经过H2处理的活性炭(HTAC)为载体,RuCl3·nH2O和CsNO3为前驱物,采用浸渍法制备了Cs促进的Ru/HTAC合成氨催化剂. 通过常压下催化剂的活性评价,以及对催化剂进行的TGA,XRD和XPS表征,研究了催化剂中金属、助剂和载体间的相互作用. 结果表明,金属Ru促进了助剂CsOH的生成,CsOH能抑制Ru颗粒的聚集变大; HTAC抑制了CsOH的挥发,CsOH可向HTAC提供电子,HTAC的表面至少需被CsOH单层饱和覆盖,才能获得最佳的催化活性; HTAC既能吸引Ru的电子,又能将所吸引的来自CsOH的更多的电子传递给Ru.","authors":[{"authorName":"吴山","id":"4ef9f043-41c0-4673-885c-1024656610fe","originalAuthorName":"吴山"},{"authorName":"郑春明","id":"52591bfb-0378-4419-b476-fcd9eea95405","originalAuthorName":"郑春明"},{"authorName":"陈继新","id":"36a7539b-29b1-40fa-8354-46c4d8954c1b","originalAuthorName":"陈继新"},{"authorName":"郑兴芳","id":"de740542-37cd-4b1f-ac81-8a5ef6af1fdc","originalAuthorName":"郑兴芳"},{"authorName":"曾海生","id":"ac5ecccd-1c3a-43c7-9d94-53f0a7192296","originalAuthorName":"曾海生"},{"authorName":"关乃佳","id":"9bfa7358-9587-4995-87ae-752a3b798528","originalAuthorName":"关乃佳"}],"doi":"","fpage":"873","id":"9b656614-4b4d-4dd9-b722-0ba53b93d304","issue":"11","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"614b59f7-b73f-43a6-b201-87725feaf0de","keyword":"钌","originalKeyword":"钌"},{"id":"42198f7f-79ae-49ea-a5e3-4e32c1dbe72a","keyword":"氢氧化铯","originalKeyword":"氢氧化铯"},{"id":"fc4e92f5-3af9-4d4f-9b1a-a949bffe7fc1","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"ecc4bd2f-a38b-412c-8055-773f31f5b978","keyword":"相互作用","originalKeyword":"相互作用"},{"id":"1c76a62e-2c5f-44ed-bb4d-46112a0061eb","keyword":"合成氨","originalKeyword":"合成氨"}],"language":"zh","publisherId":"cuihuaxb200411007","title":"Cs/活性炭促进的Ru基合成氨催化剂中金属、助剂和载体间的相互作用","volume":"25","year":"2004"},{"abstractinfo":"考察了Rh/Al2O3, Rh/SiO2和Rh/CeO2催化剂上金属-载体间相互作用对CH4/CO2重整反应抗积炭性能的影响,并与反应前后催化剂的程序升温还原和程序升温氧化(TPO)测试结果相关联. 实验发现, Rh与Al2O3和SiO2载体间的相互作用越强,催化剂还原后Rh的分散度越高,晶粒越小,高分散的Rh表面生成的碳物种CHx越多,其作为活泼的反应中间体越易与CO2反应生成CO和H2. 而游离态的Rh还原后晶粒较大,生成的碳物种与CO2反应能力较低,从而导致催化剂失活. TPO和CO2脉冲实验结果表明,反应过程中Rh/CeO2催化剂上反应生成的CHx物种比Rh/Al2O3和Rh/SiO2上的CHx物种更活泼. 同时由于Rh-CeO2间独特的相互作用,部分CeO2还原后生成CeO2-x 和氧空位,促进CO2分子的活化解离,导致生成的表面氧容易与CHx反应,从而抑制催化剂积炭.","authors":[{"authorName":"王锐","id":"606597e4-3e1b-44b9-a8a9-277643347abd","originalAuthorName":"王锐"},{"authorName":"刘雪斌","id":"235f7afd-2c8f-4c38-acd4-277b3f87d338","originalAuthorName":"刘雪斌"},{"authorName":"陈燕馨","id":"90dfb555-b289-478c-9f60-8ee0b3556440","originalAuthorName":"陈燕馨"},{"authorName":"李文钊","id":"a9cd321e-8b68-432c-b11c-98ecbe52ac0c","originalAuthorName":"李文钊"},{"authorName":"徐恒泳","id":"75d8cfe3-b942-4d1f-b946-97d738786b11","originalAuthorName":"徐恒泳"}],"doi":"","fpage":"865","id":"e689b0b7-5a5e-4482-a91b-e733f1ad197e","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"cf1827fd-fddb-43e1-b144-8831f1a81e5b","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"b61a6941-018b-4648-b15c-fb7238df7c4a","keyword":"二氧化碳重整","originalKeyword":"二氧化碳重整"},{"id":"e54cf23d-c4fa-4e5e-a368-4bf8c4340433","keyword":"铑","originalKeyword":"铑"},{"id":"64328b94-fa7b-4cf1-b704-a261e840ceda","keyword":"金属-载体相互作用","originalKeyword":"金属-载体相互作用"},{"id":"b5368106-408c-43a2-ab01-b08675d715c5","keyword":"氧空位","originalKeyword":"氧空位"},{"id":"4458b9a8-4e22-46a2-a261-eed18a6e03d2","keyword":"程序升温氧化","originalKeyword":"程序升温氧化"}],"language":"zh","publisherId":"cuihuaxb200710006","title":"金属-载体相互作用对CH4/CO2重整反应中Rh基催化剂抗积炭性能的影响","volume":"28","year":"2007"},{"abstractinfo":"以Fe2O3,Co3O4,ZrO2和ZrO2-CeO2为载体,研究了负载型Au催化剂在CO优选氧化反应中的性能,并用高分辨透射电子显微镜、X射线衍射和X射线光电子能谱等技术对催化剂进行了表征,考察了Au与载体之间的相互作用对Au电子性质的影响.结果表明,在60 ℃以下,Au/Fe2O3上CO能被完全氧化,且CO氧化反应选择性约为50%,而在Au/Co3O4,Au/ZrO2和Au/ZrO2-CeO2催化剂上,CO在更低的温度下才能被完全氧化.这是由于具有拉电子效应的载体(如Fe2O3和Co3O4)能使Au带有部分正电荷,从而对CO优选氧化反应具有较高的催化活性.因此,选择合适的载体或对载体进行掺杂改性,调节Au的正电荷数目,有可能进一步提高Au催化剂的催化活性.","authors":[{"authorName":"张启俭","id":"5c2a0fee-8059-4684-a007-1f8d8562d5cb","originalAuthorName":"张启俭"},{"authorName":"齐平","id":"68baf3e1-0898-45f9-a52b-9d827f0384b4","originalAuthorName":"齐平"},{"authorName":"周迎春","id":"6e0d9940-e86a-4e26-80b9-60c7d471aec4","originalAuthorName":"周迎春"}],"doi":"","fpage":"361","id":"32fd162d-c04b-4173-9e24-d22ab3e7923b","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"e074836f-2137-4b70-ad57-fbd4fabc1f70","keyword":"富氢气体","originalKeyword":"富氢气体"},{"id":"f6ac509d-f4f4-4512-b36f-55c7d2eabf47","keyword":"一氧化碳","originalKeyword":"一氧化碳"},{"id":"7281dfae-3bdc-4d06-8c5c-f7088739613c","keyword":"优选氧化","originalKeyword":"优选氧化"},{"id":"4937c78b-c9f2-47f5-9282-86ebdabd4316","keyword":"金","originalKeyword":"金"},{"id":"d3c7f36e-c6dc-47a4-9bc2-d2cdb652820a","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"73057376-e68b-48a4-ad8a-9fa9f8e50594","keyword":"三氧化二铁","originalKeyword":"三氧化二铁"},{"id":"30f6aa41-e51e-40f6-8fe8-26665499e5a5","keyword":"四氧化三钴","originalKeyword":"四氧化三钴"},{"id":"84fec1de-06bc-4435-9f7f-a436e2d2eddb","keyword":"二氧化锆","originalKeyword":"二氧化锆"},{"id":"4a3ea9a0-8cdb-477a-aa7b-048b972192d6","keyword":"二氧化铈","originalKeyword":"二氧化铈"}],"language":"zh","publisherId":"cuihuaxb200804011","title":"富氢气体中CO优选氧化反应: Au与载体相互作用的影响","volume":"29","year":"2008"},{"abstractinfo":"本文从麦克斯韦电磁理论出发,理论上分析了微波与物质相互作用机理,指出介质吸收微波源于介质对微波的电导损耗和极化损耗,高温下,电导损耗将占主要地位.利用微波加热物质,物质的损耗有一定的限制,对干2.45GHz的微波,物质电导率应在1Ω-1cm-1以下,根据现有的无机非金属材料的电导率数据,对某些无机非金属材料的微波加热特性进行了简单的评估;在一些简单的假设下,对微波加热样品时,样品内部温度分布情况作了简要描述,对微波场中非均匀固体的行为进行了简单的分析和预测.","authors":[{"authorName":"黄向东","id":"a62509e7-00d6-4e11-83b0-273907996fb5","originalAuthorName":"黄向东"},{"authorName":"李建保","id":"f852e58c-48a7-4318-bfbb-7ae726d968bf","originalAuthorName":"李建保"},{"authorName":"谢志鹏","id":"73ca5a19-d989-45fd-b892-8a8375095544","originalAuthorName":"谢志鹏"},{"authorName":"黄勇","id":"4fce6eaf-eee0-46a2-80b3-891403d3e80b","originalAuthorName":"黄勇"}],"categoryName":"|","doi":"","fpage":"282","id":"facde6cc-16a9-4f25-a833-c5386f127cb7","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"741ca554-5e54-48e7-b6df-2233c3a03785","keyword":"微波加热","originalKeyword":"微波加热"},{"id":"a7554833-e265-4414-9ef2-22087c26233e","keyword":"null","originalKeyword":"null"},{"id":"d6ca30f5-992a-4090-b128-00af42c22a44","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_1998_3_11","title":"微波与无机非金属介质的相互作用","volume":"13","year":"1998"},{"abstractinfo":"通过乙二醇还原,在Vulcan XC-72 炭黑上负载了三种具有不同平均粒径(1.7 nm,3.0 nm和5.0 nm)的Pt催化剂.利用透射电子显微镜,研究了载体炭黑表面的微孔与Pt催化剂之间的几何相互作用.结果表明:尺寸较小的Pt颗粒(平均粒径为1.7 nm)通常被包含在载体表面的微孔中,表现为被一薄碳层所覆盖并嵌入炭黑基体.而尺寸较大的Pt颗粒(平均粒径为3.0 nm和5.0 nm)则不存在这种现象,往往显示出裸露的清洁表面.这种与载体表面微孔的不同相互作用引起了Pt颗粒在电化学活性比表面上的反常尺寸效应,进而影响了其催化甲醇氧化的质量比活性.","authors":[{"authorName":"干林","id":"05f37943-bbfd-49ae-8bcf-d27e1628ac08","originalAuthorName":"干林"},{"authorName":"杜鸿达","id":"f4dd26fc-5262-4936-af2e-0776a2c572ca","originalAuthorName":"杜鸿达"},{"authorName":"李宝华","id":"036bb92d-93b3-4d40-80be-23a69e156189","originalAuthorName":"李宝华"},{"authorName":"康飞宇","id":"219d0989-9348-4166-8763-ae7e31f37aab","originalAuthorName":"康飞宇"}],"doi":"10.1016/S1872-5805(09)60015-9","fpage":"53","id":"9da8147b-f5ff-4531-ac78-4a6646b54f79","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"e69c0d7a-b7d0-4235-8e5a-50c3161b7e34","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"3dbabe37-ebfa-4f9c-8624-21d2bc523a13","keyword":"甲醇氧化","originalKeyword":"甲醇氧化"},{"id":"256a1b76-522c-415e-a9af-434d01d3b73d","keyword":"尺寸效应","originalKeyword":"尺寸效应"},{"id":"f26764e3-d1ab-4d08-99cd-2fa2556b738d","keyword":"金属-载体相互作用","originalKeyword":"金属-载体相互作用"},{"id":"c25a173c-a864-431d-88e7-28c69f958786","keyword":"透射电子显微镜","originalKeyword":"透射电子显微镜"}],"language":"zh","publisherId":"xxtcl201001009","title":"载体炭与Pt催化剂之间的相互作用及其引起的尺寸效应","volume":"","year":"2010"},{"abstractinfo":"利用Hillert亚点阵理论和点阵静力学分析方法,建立了简谐近似下包含弹性效应即应变诱发相互作用的间隙合金总能量模型,获得了间隙原子间有效相互作用势.分别将描述基体亚点阵和间隙亚点阵的能量及其相互作用的点阵静力学方程,在标准态附近作简谐近似,给出了包括化学相互作用势、Kanzaki力和动力学矩阵等系数的间隙合金总能量公式,再依据点阵静力学方程的平衡条件,确定了包含应变诱发相互作用的间隙原子间有效相互作用势.合金间隙原子间的有效相互作用势取决于化学相互作用势以及Kanzaki力与动力学矩阵耦合的应变诱发相互作用势,与原子种类、点阵参数及合金浓度相关.利用间隙合金的总能量模型计算了δ-Pu中He原子的有效相互作用势,结果表明,随着He原子浓度增加,间隙亚点阵常数增大,化学相互作用势和应变诱发相互作用势均减小,造成有效相互作用势降低.有效相互作用主要受应变诱发相互作用的影响.","authors":[{"authorName":"张志鹏","id":"ee057a92-03ca-4a31-9294-62f287fc2335","originalAuthorName":"张志鹏"},{"authorName":"雷明凯","id":"d62e6a78-4f65-4a0b-a7b8-d1c6d627f23c","originalAuthorName":"雷明凯"}],"doi":"10.3724/SP.J.1037.2013.00255","fpage":"103","id":"6fd1092f-e259-4818-af83-90156002afdd","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"5f73b603-480f-4995-a8a4-979b5c68c7a1","keyword":"有效相互作用势","originalKeyword":"有效相互作用势"},{"id":"21beefee-792f-46e0-a5fc-ff80a5bf4d3e","keyword":"合金总能量","originalKeyword":"合金总能量"},{"id":"c80fbba9-68f8-4a0a-a527-c6ec79bd8376","keyword":"间隙原子","originalKeyword":"间隙原子"},{"id":"c39b3b06-2192-4de3-8cb6-b7c7ca236972","keyword":"点阵静力学","originalKeyword":"点阵静力学"},{"id":"77162130-8910-48cb-ab12-1aed7ef0aed6","keyword":"Pu","originalKeyword":"Pu"},{"id":"2fc77811-191b-454d-9e0f-8ed0e820af24","keyword":"He","originalKeyword":"He"}],"language":"zh","publisherId":"jsxb201401014","title":"金属中间隙原子的有效相互作用势","volume":"50","year":"2014"},{"abstractinfo":"采用分子束外延法在Pt(111)单晶表面上制备有序的ZrO2(111)薄膜,利用低能电子衍射谱、同步辐射光电子能谱和X射线光电子能谱研究了Cu纳米颗粒在ZrO2(111)薄膜表面的生长模式和界面相互作用.结果表明,室温下Cu先以二维模式生长到0.15单层(ML),接着以三维模式生长.随着Cu覆盖度的减小,Cu 2p3/2峰逐渐向高结合能位移,可归因于初态效应和终态效应共同作用的结果.Cu最初沉积到ZrO2表面时,两者间存在较强的相互作用,Cu向ZrO2衬底传递电荷,以Cu(I)形式出现.当Cu覆盖度增加到1 ML以后,Cu开始表现出金属特征.","authors":[{"authorName":"侯建波","id":"9c06d730-6a4f-4c93-9e52-0ce6e5339195","originalAuthorName":"侯建波"},{"authorName":"韩永","id":"b593b4a4-76e5-4218-8dd5-6daa7a2b05cf","originalAuthorName":"韩永"},{"authorName":"潘永和","id":"d39a5cd8-fb97-4931-973b-e2d05d86eece","originalAuthorName":"潘永和"},{"authorName":"徐倩","id":"995abb73-9673-43b0-a221-4769e6ee7f4b","originalAuthorName":"徐倩"},{"authorName":"潘海斌","id":"ec080e66-3385-4d30-a92f-3f9cd8552938","originalAuthorName":"潘海斌"},{"authorName":"朱俊发","id":"8811afbc-d816-4c98-abb1-7cf906434f79","originalAuthorName":"朱俊发"}],"doi":"10.3724/SP.J.1088.2012.20640","fpage":"1712","id":"7af0928a-98fb-4084-8585-d9278a5299fd","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"a2209f9f-f352-4687-af71-884d8a0b8047","keyword":"铜","originalKeyword":"铜"},{"id":"f7b8a9b6-936d-401a-b02c-b13b8ed16f57","keyword":"二氧化锆","originalKeyword":"二氧化锆"},{"id":"1eec60e0-f50d-447d-8ff2-5206f5432ae5","keyword":"低能电子衍射谱","originalKeyword":"低能电子衍射谱"},{"id":"2609514d-0e88-488b-8f10-5b1bab3d9caa","keyword":"X射线光电子能谱","originalKeyword":"X射线光电子能谱"},{"id":"e7c6ee69-eb81-4057-9827-6f1ed90c7f7c","keyword":"同步辐射光电子能谱","originalKeyword":"同步辐射光电子能谱"},{"id":"4810bbb0-4670-4233-aa81-09a598fd9193","keyword":"界面相互作用","originalKeyword":"界面相互作用"},{"id":"f1a165c4-062b-4db2-b6d2-14d0a116c6d7","keyword":"初态效应","originalKeyword":"初态效应"},{"id":"ce11e8ba-63fd-4f89-90f4-162316081641","keyword":"终态效应","originalKeyword":"终态效应"}],"language":"zh","publisherId":"cuihuaxb201210014","title":"Cu在ZrO2(111)薄膜载体上的生长与界面相互作用","volume":"33","year":"2012"},{"abstractinfo":"采用密度泛函DFT/B3LYP方法,研究了在气相和生物环境内稳定存在的2种构型的还原型谷胱甘肽(GSH)与不同价态金属铬离子(Cr2+,Cr3+,Cr6+)相互作用.金属离子的电荷越高、半径越小,与GSH结合能越大,使GSH的变形程度也越大.金属Cr6+在气相和液相条件与GSH作用均促使了GSH的骨架断裂,末端羧基发生脱羧.Cr3+和Cr2+与气相中性和液相两性离子结构的GSH分子相互作用均形成了9种稳定的复合物,与气相计算结果相比,考虑溶剂化效应之后,金属离子与GSH两性离子作用的结合能要比与在气相条件下中性的GSH相互作用能大大降低.","authors":[{"authorName":"刘建华","id":"5871b477-a840-46c6-9f7d-ab3f5c21aa23","originalAuthorName":"刘建华"},{"authorName":"李燕","id":"3bcbdd5b-8545-4c3a-9948-331e4c9f5373","originalAuthorName":"李燕"},{"authorName":"王海军","id":"cf0dcfe8-5e52-4ff1-a104-118980a5a441","originalAuthorName":"王海军"}],"doi":"10.3724/SP.J.1095.2013.20444","fpage":"963","id":"64fd6a2d-008d-42f3-9f61-5625a2986d4e","issue":"8","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"17a1e845-51b3-468f-baab-6725daf282f5","keyword":"铬离子","originalKeyword":"铬离子"},{"id":"bd09b291-0a2c-48f7-b45f-cff256f731d5","keyword":"谷胱甘肽","originalKeyword":"谷胱甘肽"},{"id":"03b93706-22cc-44de-b089-0140e1a3f9c4","keyword":"密度泛函","originalKeyword":"密度泛函"}],"language":"zh","publisherId":"yyhx201308019","title":"密度泛函研究不同价态金属铬离子与谷胱甘肽相互作用","volume":"30","year":"2013"}],"totalpage":5089,"totalrecord":50887}