{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"建立了离子色谱检测液体炸药爆炸尘土中肼离子的方法.用去离子水超声提取尘土样品中的肼离子,离心后取上清液并将其分别过OnGuardⅡRP小柱和0.22 μm过滤膜,经IonPac CS-12A阴离子色谱柱(250 mm × 4mm)分离,采用5 mmol/L甲基磺酸等度淋洗,0.1 mol/L NaOH溶液柱后加碱,金电极安培检测器检测.结果表明,肼离子质量浓度在0.02~ 2.0 mg/L范围内的线性关系良好(相关系数r2=0.999 7).以信噪比(S/N)为3确定方法检出限为5.0 μg/L,S/N为10确定方法定量限为16.6 μg/L.方法回收率在95.4% ~ 99.1%之间,相对标准偏差(RSD,n=5)在2.1% ~ 3.3%之间.应用该方法检测液体炸药爆炸尘土中肼离子的含量为10.3 mg/kg.该方法操作简便,结果准确,适用于液体炸药爆炸尘土中肼离子的定量检测,满足刑事物证鉴定工作的需要.","authors":[{"authorName":"王勇","id":"67bdae1f-b722-460c-abdd-397aec071ac4","originalAuthorName":"王勇"},{"authorName":"耿庆","id":"cd944ca2-ea3c-47fb-be8a-54273e2e9a13","originalAuthorName":"耿庆"},{"authorName":"左跃先","id":"47ce10d8-0fbc-4c62-a7e7-8632b44f3151","originalAuthorName":"左跃先"},{"authorName":"周新文","id":"e9e8d47f-32a8-4b23-9ebc-a971c7ec4928","originalAuthorName":"周新文"},{"authorName":"练鸿振","id":"8b4d414c-fb4f-4d18-8226-573005a4b081","originalAuthorName":"练鸿振"},{"authorName":"潘广文","id":"d23d8ee2-e2a9-4683-bd81-7a061534a630","originalAuthorName":"潘广文"}],"doi":"10.3724/SP.J.1123.2013.04025","fpage":"920","id":"d7f212a8-2b15-4679-8f05-5d969dfc3fef","issue":"9","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"5173fdb6-0419-4a9b-9571-f530a8a1576e","keyword":"离子色谱法","originalKeyword":"离子色谱法"},{"id":"38f40cea-9ae7-46eb-8801-0da8ff2174fd","keyword":"柱后加碱","originalKeyword":"柱后加碱"},{"id":"95ea9ce2-ed86-476d-b0a3-aa65f470d3f1","keyword":"肼","originalKeyword":"肼"},{"id":"e21d76c8-6b99-40b3-bdab-654b2826cf70","keyword":"爆炸尘土","originalKeyword":"爆炸尘土"},{"id":"baddd7a3-4d00-4e33-a9ef-abdcafe19b34","keyword":"液体炸药","originalKeyword":"液体炸药"},{"id":"357ccfcc-2f3c-431b-8b16-6799f359e6ac","keyword":"刑事物证鉴定","originalKeyword":"刑事物证鉴定"}],"language":"zh","publisherId":"sp201309018","title":"离子色谱法检验液体炸药爆炸尘土中的肼离子","volume":"31","year":"2013"},{"abstractinfo":"共晶炸药是一种将不同炸药通过分子间作用力在分子层面加以混合的晶体.通过形成共晶炸药能够有效改善部分炸药的氧平衡及感度,提高其暴热、做功能力及安全性等,具有广阔的研究前景.综述了共晶炸药在分子间相互作用下的形成原理;概述了溶剂法、熔融法等共晶炸药的制备方法;总结了粉末X射线衍射(PXRD)、单晶X射线衍射、差式扫描量热法(DSC)和红外光谱法(IR)等共晶炸药的表征方法;评述了共晶炸药的研究现状、发展方向及应用前景.","authors":[{"authorName":"郭长艳","id":"e5585ca2-f3b5-45c7-b864-895f2f152071","originalAuthorName":"郭长艳"},{"authorName":"张浩斌","id":"f2de0167-30c6-41cc-81d3-894ce8edf28a","originalAuthorName":"张浩斌"},{"authorName":"王晓川","id":"c23d5cee-b745-460a-8c09-1792d4fc3293","originalAuthorName":"王晓川"},{"authorName":"孙杰","id":"3bb29bbe-b3c9-443f-8ea6-b5ee343ffbcb","originalAuthorName":"孙杰"}],"doi":"","fpage":"49","id":"6402e0e3-ed45-43ae-bc91-b571eff67c50","issue":"19","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"78faf145-6f10-449b-8c78-4c4d8a5b67c7","keyword":"共晶炸药","originalKeyword":"共晶炸药"},{"id":"922ae593-7d25-406f-b682-345ebfb542ca","keyword":"形成原理","originalKeyword":"形成原理"},{"id":"887efa16-f196-46a1-9f8e-fc285ba9d8f4","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"cldb201219012","title":"共晶炸药研究进展","volume":"26","year":"2012"},{"abstractinfo":"以模压法压制的样品的密度和压缩强度随造型粉装药量的增加而降低,证明压制过程中样品内部存在应力梯度;常温压制的药柱的密度和压缩强度明显低于高温压制样品的密度和压缩强度.其原因在于高温使造型粉的粘结体系软化,降低造型粉之间的摩擦,从而降低应力梯度,尤其是当温度超过粘结体系的熔融温度后粘结体熔化、冷却形成一个整体,因此升高压制温度可以明显地提高炸药的压制质量.","authors":[{"authorName":"庞海燕","id":"4cec031c-20ee-4c46-8d0c-b8d66ca5d4da","originalAuthorName":"庞海燕"},{"authorName":"李明","id":"dbce3659-4e88-49fc-8bf8-0e8660d8e475","originalAuthorName":"李明"},{"authorName":"温茂萍","id":"89290228-b11a-4bc8-b645-c14ec14de995","originalAuthorName":"温茂萍"},{"authorName":"蓝林刚","id":"b83685f4-d014-4ef1-90da-48b340d93d81","originalAuthorName":"蓝林刚"}],"doi":"10.3969/j.issn.1004-244X.2011.01.006","fpage":"21","id":"2819110e-2319-4aaf-9f19-5b001fa920c2","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"843c31c8-7897-4081-a8d4-d852982b1c12","keyword":"PBX","originalKeyword":"PBX"},{"id":"2f4089cb-9cf6-40c9-a59e-373651adfe61","keyword":"应力梯度","originalKeyword":"应力梯度"},{"id":"2717d2a9-e639-4139-86bc-c356c5472d35","keyword":"裂纹愈合","originalKeyword":"裂纹愈合"}],"language":"zh","publisherId":"bqclkxygc201101006","title":"温度对PBX炸药压制的作用","volume":"34","year":"2011"},{"abstractinfo":"综述了近年来微纳米单质炸药的研究现状和进展.以黑索今(RDX)、奥克托今(HMX)、六硝基六氮杂异伍兹烷(CL-20)、三氨基三硝基苯(TATB)、1,1-二氨基-2,2-二硝基乙烯(FOX-7)、六硝基芪(HNS)、3-硝基-1,2,4-三唑-5-酮(NTO) 单质炸药为主线,介绍了微纳米单质炸药的制备方法、形成机理和性能研究.探讨了制备微纳米单质炸药的关键问题,最后从理论和实践角度对微纳米单质炸药的研究重点和发展趋势进行了展望.","authors":[{"authorName":"高冰","id":"a9d3ace9-6cab-46d3-8625-86d93b9a6c01","originalAuthorName":"高冰"},{"authorName":"朱自强","id":"f42405c5-ebd4-4bf1-84c5-64f76f127358","originalAuthorName":"朱自强"},{"authorName":"李瑞","id":"ddf62f27-fe50-4670-a1da-7165dbf1c515","originalAuthorName":"李瑞"},{"authorName":"王军","id":"d09e8539-9d69-4d85-bb22-b507774e633e","originalAuthorName":"王军"},{"authorName":"谯志强","id":"2fd30af8-d52a-4546-9db5-5b36a12419cf","originalAuthorName":"谯志强"},{"authorName":"杨光成","id":"a272afba-bb1b-4aa4-b060-ef91c6c9ec95","originalAuthorName":"杨光成"},{"authorName":"聂福德","id":"654df0cd-8833-40fb-bcb9-1bdd6470923f","originalAuthorName":"聂福德"}],"doi":"","fpage":"7","id":"f76421f5-d025-4773-b25d-2a37e1457166","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8eea53f8-0896-4077-b1d3-5082eb9037e7","keyword":"含能材料","originalKeyword":"含能材料"},{"id":"fe00a8b0-e4b5-460b-ac82-f2445f0c9021","keyword":"单质炸药","originalKeyword":"单质炸药"},{"id":"b43a823d-fe3c-4766-964f-ddd674356435","keyword":"微纳米","originalKeyword":"微纳米"},{"id":"dab12644-51e1-4a78-ab91-d71e12f3d5c3","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"cldb201323002","title":"微纳米单质炸药的研究现状及展望","volume":"27","year":"2013"},{"abstractinfo":"在压药工艺安全性分析、炸药理论密度计算、传统压药模具改造的基础上,通过均匀粉体制备和压药工艺,制备了自蔓延纳米炸药药柱.分析了工艺参数对压药密度的影响,发现增大压制压力、适当提高加压速度、采取多次加药的压药方法能够提高压药密度.此项研究为制备高密度纳米炸药提供了参考.","authors":[{"authorName":"李宁一","id":"51a58d6a-8850-47e9-a4df-d6b6fe9240b3","originalAuthorName":"李宁一"},{"authorName":"陈威","id":"7f8ecdc2-b4e8-4c36-adaa-f630d920f86d","originalAuthorName":"陈威"},{"authorName":"苏宏艺","id":"29b3326a-bcdb-4583-836c-7b33dc7ea395","originalAuthorName":"苏宏艺"},{"authorName":"孙炜海","id":"5f780c32-d116-4243-a9ce-b8603de5260d","originalAuthorName":"孙炜海"}],"doi":"10.13228/j.boyuan.issn1005-8192.2016036","fpage":"48","id":"e1c66094-8aeb-4cb2-95f9-529397575ba3","issue":"4","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"b0c2cc40-198e-4096-b59c-255eb388d52c","keyword":"自蔓延纳米炸药","originalKeyword":"自蔓延纳米炸药"},{"id":"6101f397-87d5-4bbf-8624-7b8108a367df","keyword":"压药安全","originalKeyword":"压药安全"},{"id":"f54238ac-18e5-404a-bb97-6ca9ee47f973","keyword":"压药模具","originalKeyword":"压药模具"},{"id":"bd83c972-a4a2-411a-aa88-9d7d59c4eb23","keyword":"压药密度","originalKeyword":"压药密度"}],"language":"zh","publisherId":"jsgncl201604009","title":"自蔓延纳米炸药制备及压药参数影响","volume":"23","year":"2016"},{"abstractinfo":"为研究不同壳体材料对破片撞击带壳Comp B装药的影响,利用AUTODYN-2D软件建立破片撞击带壳炸药模型,对破片撞击、起爆不同壳体炸药的过程进行数值仿真.采用“升—降”法确定破片撞击带壳炸药的临界起爆速度,并定量分析了临界起爆速度随壳体密度、强度的变化规律,仿真计算结果能够较好地符合Jacobs-Roslund经验准则.壳体材料采用钨合金时,临界起爆速度较高强工具钢提高了22.5%,较中强钢提高了24.4%,较铝提高了38.8%.仿真结果表明破片撞击起爆带有高密度、高强度材料壳体的炸药时,临界速度更高.为传统弹药的改进及不敏感战斗部的设计提供了壳体材料选择的依据.","authors":[{"authorName":"濮赞泉","id":"31d8089a-190e-40da-82d2-01db665a13cf","originalAuthorName":"濮赞泉"},{"authorName":"郑宇","id":"1c91b5f2-fba7-4b22-abcd-37fc054ed427","originalAuthorName":"郑宇"},{"authorName":"刘晓军","id":"627d0ddc-ffd9-41ff-9211-da021ca091e0","originalAuthorName":"刘晓军"},{"authorName":"王勇","id":"58795480-6917-4054-8863-5da722067cfb","originalAuthorName":"王勇"}],"doi":"","fpage":"12","id":"4e337511-7663-4ce4-b689-283425a74633","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"726e7a73-2507-4672-9246-6e83eb5a4817","keyword":"破片","originalKeyword":"破片"},{"id":"8fe4ec4b-d36d-4b59-ac1c-831349bcf4f2","keyword":"冲击起爆","originalKeyword":"冲击起爆"},{"id":"2d258205-adbb-4d0b-80b8-992d9d5536e3","keyword":"壳体材料","originalKeyword":"壳体材料"},{"id":"18f7cbea-e662-4a78-833f-4ee6ec6baf8d","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"bqclkxygc201505004","title":"破片对不同壳体炸药冲击起爆研究","volume":"38","year":"2015"},{"abstractinfo":"介绍了1种新的制备纳米石墨粉的方法--炸药爆轰法.对合成的粉末进行X射线衍射相分析,确认其为石墨结构,平均晶粒径为1.86 nm~2.58 nm.用透射电子显微镜和激光拉曼仪作进一步的分析,结果表明炸药爆轰法制备的粉末为纳米石墨粉,颗粒呈球形或椭球形.用小角X光散射仪对纳米石墨粉进行了粒度分布测量,粒径分布在1 nm~60 nm之间,属于纳米级.","authors":[{"authorName":"文潮","id":"5a75a963-3180-4a0a-a76f-92b69986099b","originalAuthorName":"文潮"},{"authorName":"金志浩","id":"e0afb371-b515-4a26-ae12-524e68b76a12","originalAuthorName":"金志浩"},{"authorName":"关锦清","id":"1ec8e7ef-88e5-47ef-9b21-9d9a3893b6af","originalAuthorName":"关锦清"},{"authorName":"李迅","id":"9d8b87d7-4145-4536-a9da-6257febf89f3","originalAuthorName":"李迅"},{"authorName":"周刚","id":"ab56df7d-dbe1-4c9b-aabb-8f7629f6d579","originalAuthorName":"周刚"},{"authorName":"林俊德","id":"021ecadf-e125-4ec9-8d16-303cd54149c4","originalAuthorName":"林俊德"}],"doi":"","fpage":"628","id":"a909d7ec-cacd-47d7-8911-797e21deddc1","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4c72f5a2-b083-4b44-ad65-461e22b71a25","keyword":"纳米石墨粉","originalKeyword":"纳米石墨粉"},{"id":"3e137e88-c8af-4452-b044-fa663838cb7c","keyword":"爆轰法","originalKeyword":"爆轰法"},{"id":"6e4838f4-d47d-44aa-ad7a-dca821d1b8ea","keyword":"粒度","originalKeyword":"粒度"}],"language":"zh","publisherId":"xyjsclygc200406017","title":"炸药爆轰法制备纳米石墨粉","volume":"33","year":"2004"},{"abstractinfo":"  以激光辐照圆柱形金属/炸药结构为研究背景,通过建立热传导的有限元方程得到温度场数值解,分析材料属性对温度场及炸药热爆炸的影响。结果表明:金属材料热导率越大,比热容越小,则壳体表面温度和炸药温度越高,越有利于炸药的热起爆;隔热层的存在阻止了能量沿激光辐照轴线的传导,减缓炸药的温升,不利于炸药的热起爆。","authors":[{"authorName":"张东来","id":"a0375b72-4261-41f2-9374-92f65294114d","originalAuthorName":"张东来"},{"authorName":"李小将","id":"e3c9b618-da9d-4f41-b92c-efb92c02bac8","originalAuthorName":"李小将"},{"authorName":"王志恒","id":"adb561b2-44d2-41e9-ba13-b02ce88fdc9a","originalAuthorName":"王志恒"},{"authorName":"杨成伟","id":"a33cb2eb-fe81-48c9-bbe9-3d5f4a47e4e2","originalAuthorName":"杨成伟"}],"doi":"","fpage":"48","id":"36f04e83-121b-4573-9094-2c70ee80038e","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"c7f297d1-7886-41f0-abbf-5034304e1c99","keyword":"材料属性","originalKeyword":"材料属性"},{"id":"a850f22c-8da5-48eb-b203-e15ea164dceb","keyword":"激光辐照","originalKeyword":"激光辐照"},{"id":"8bcb812a-1c35-4ac7-8d45-081231bd4d1e","keyword":"金属/炸药结构","originalKeyword":"金属/炸药结构"},{"id":"e0fdfef2-9f31-4dec-a726-2a859c6b2cb4","keyword":"温度场","originalKeyword":"温度场"},{"id":"003e22ca-1fd4-4a9c-90a4-10bdc6a375f9","keyword":"热爆炸","originalKeyword":"热爆炸"}],"language":"zh","publisherId":"bqclkxygc201303017","title":"材料属性对激光辐照金属/炸药结构的影响分析","volume":"","year":"2013"},{"abstractinfo":"本文简介通过高能炸药合成球形纳米金刚石的一些研究进展.X射线衍射谱显示,得到的纳米金刚石微晶为立方结构金刚石;晶粒尺寸为4~6nm,并有很大的微应力.高分辨率透射电镜观察表明,金刚石微晶在形成过程中经历了液态碳微滴聚结长大的过程.在这种材料的应用方面,本文报道了纳米金刚石用于提高化学气相生长金刚石薄膜的成核率:其出色的场发射性能用于电子显示材料,以及用于耐磨、减摩材料的若干试验成果.","authors":[{"authorName":"陈权","id":"58ca8cca-1016-495b-b920-3fcf475d3f79","originalAuthorName":"陈权"},{"authorName":"恽寿榕","id":"ade9e521-f050-4b54-a3b3-818f9017039b","originalAuthorName":"恽寿榕"}],"doi":"10.3969/j.issn.1000-985X.2000.01.020","fpage":"90","id":"0e690cb5-3213-4631-b352-9e930f19c877","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"0e620654-8f1c-4ad0-ba53-72a7d1dc227d","keyword":"爆炸合成","originalKeyword":"爆炸合成"},{"id":"4b57ca9e-5863-4b22-b4cc-ac224947c3ea","keyword":"纳米金刚石","originalKeyword":"纳米金刚石"},{"id":"2cd9db45-9a60-453f-8746-8bef93628188","keyword":"形貌表征","originalKeyword":"形貌表征"},{"id":"6c22de35-97da-48f4-af21-b973d6c02356","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"}],"language":"zh","publisherId":"rgjtxb98200001020","title":"炸药爆轰合成纳米金刚石及其应用","volume":"29","year":"2000"},{"abstractinfo":"为研究炸药对定向式动能杆飞散速度的影响规律,以非线性动力分析软件LS-DYNA为工具,分别对PENT,Deta?sheet-C,C4炸药,TNT,B炸药和8701共6种不同炸药对定向式动能杆的飞散速度进行数值模拟研究,得出炸药的密度、爆速和爆压对动能杆飞散速度的影响规律.实验得到Detasheet-C装药下动能杆的飞散速度,仿真结果与试验结果基本吻合,可为此类战斗部的设计提供参考.","authors":[{"authorName":"王超","id":"35f21503-3c68-493f-8d1b-7026ccfda366","originalAuthorName":"王超"},{"authorName":"姜春兰","id":"8250ecc3-4df1-4eef-8712-30b7dbb2c42c","originalAuthorName":"姜春兰"},{"authorName":"毛亮","id":"2585bfce-2c35-4e0c-9f14-04e5ba258945","originalAuthorName":"毛亮"},{"authorName":"杨伟苓","id":"01d4f3a4-9259-417c-b21d-8d8bc1be9725","originalAuthorName":"杨伟苓"}],"doi":"","fpage":"37","id":"22e2c9ca-1123-45b1-a19b-b60494287e5b","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"f69f0475-4f9e-4103-8f46-e3da67488d2e","keyword":"炸药材料","originalKeyword":"炸药材料"},{"id":"61ba111d-56c9-482e-94dc-7ec210742587","keyword":"动能杆","originalKeyword":"动能杆"},{"id":"f964c86f-dc7d-4688-a46c-e120dfd9a0fe","keyword":"LS-DYNA","originalKeyword":"LS-DYNA"},{"id":"9ab90ff6-ada2-4800-b2c8-b42bd583fdc3","keyword":"材料特性","originalKeyword":"材料特性"},{"id":"e456b5e6-11e9-44a7-85ba-355f6a68a93a","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"bqclkxygc201302012","title":"炸药材料参数对定向式动能杆飞散速度的影响","volume":"","year":"2013"}],"totalpage":269,"totalrecord":2687}