{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了氯化聚乙烯(CPE)的性质、生产方法及应用情况,并对其市场发展前景作了展望。","authors":[{"authorName":"崔小明","id":"c5a4a6d6-d6b7-42b4-9e1c-31c8da079992","originalAuthorName":"崔小明"}],"doi":"10.3969/j.issn.1671-5381.2001.01.009","fpage":"33","id":"342d1ab1-4961-49f4-a6e4-87d694ddf58c","issue":"1","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"0ac6e004-6440-4092-81a1-a69885ad4bc4","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"},{"id":"7ae9d2c6-e23d-4eb9-b7b2-19da7c5b25f5","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"99b6f3ac-a800-4f25-b83f-3c9fdc7544d5","keyword":"生产","originalKeyword":"生产"},{"id":"9cfa1df5-2bb8-4391-b7be-40b0d31d03ed","keyword":"应用","originalKeyword":"应用"},{"id":"717c0144-3f3e-4ffa-b6ae-f8e17616d89e","keyword":"市场前景","originalKeyword":"市场前景"}],"language":"zh","publisherId":"hccllhyyy200101009","title":"氯化聚乙烯的生产应用及市场前景","volume":"","year":"2001"},{"abstractinfo":"以氯化聚乙烯为主体,对苯二甲酸二辛酯(DOTP)和石蜡为软化剂,补强剂为高耐磨碳黑和半补强碳黑,以碳酸钙和滑石粉为填充剂,三盐基性硫酸铅为稳定剂,DCP和TAIC为硫化体系,制备船缆用氯化聚乙烯护套橡皮的研制过程.对其性能进行了测定分析,结果表明,护套橡皮性能优良,适用于船用电缆的生产.","authors":[{"authorName":"苏朝化","id":"5e2f131c-3267-4409-8c87-c2e64a89d8b7","originalAuthorName":"苏朝化"},{"authorName":"陈学武","id":"edc0e42d-45b6-4439-97ff-436da0050997","originalAuthorName":"陈学武"},{"authorName":"裴海燕","id":"e1411bb0-9205-4128-8b4b-906c715fe6d0","originalAuthorName":"裴海燕"}],"doi":"10.3969/j.issn.1009-9239.2008.01.003","fpage":"8","id":"8e1e470a-624a-4399-b17b-92a8b3d6e59a","issue":"1","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"87ac0c08-23ca-4f34-936b-71a2df7b91cd","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"},{"id":"37ccf224-09b9-499f-adb6-34f87e7a0df2","keyword":"船缆","originalKeyword":"船缆"},{"id":"14d00fc9-ee63-4664-88e6-eb8670817cfa","keyword":"护套","originalKeyword":"护套"},{"id":"16f01d79-eede-478c-9534-4cff0c6b5bff","keyword":"配方","originalKeyword":"配方"}],"language":"zh","publisherId":"jycltx200801003","title":"船缆用氯化聚乙烯护套橡皮研究","volume":"41","year":"2008"},{"abstractinfo":"采用微波辐照法制备了膨胀石墨(EG),利用EG、氯化聚乙烯(CPE)和聚氯乙烯(PVC)的固相剪切碾磨(S3 M)制备了EG-CPE-PVC复合粉体,复合粉体进一步与PVC、热稳定剂和增塑剂混匀,经塑化和模压成型得到类石墨烯/CPE-PVC复合材料.用粒度分析、XRD、AFM、SEM和TEM等手段表征了复合粉体及其复合材料的结构与性能.结果表明:S3M实现了体系的粉碎、分散,EG片层的剥离及与CPE-PVC的纳米复合.CPE的加入实现了EG的进一步剥层,使EG片层的厚度达到1~3层,达到了EG的石墨烯化目标.当EG质量分数为3%时,类石墨烯/CPE-PVC复合材料的电导率呈指数上升,与PVC相比提高了8个数量级;当EG质量分数超过4%时,电导率再次激增,出现逾渗现象;在EG质量分数为5%时,电导率达到0.01 S/m,复合材料表现出良好的抗静电性能.","authors":[{"authorName":"李侃社","id":"3ea935ef-17ac-4a44-9626-8e590e6178a5","originalAuthorName":"李侃社"},{"authorName":"李树良","id":"b26eda25-78c8-437f-8c94-0b0fc9388992","originalAuthorName":"李树良"},{"authorName":"陈创前","id":"87ea3e50-2880-401a-951c-f2b2e9acdc17","originalAuthorName":"陈创前"},{"authorName":"康洁","id":"2eefa229-527e-45c3-8182-e11b6f7916ce","originalAuthorName":"康洁"}],"doi":"","fpage":"1219","id":"a82ecb09-37f5-41f2-827c-a4ce36458126","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"2616e06f-52ba-4216-bc0d-af5c15d8455c","keyword":"固相剪切碾磨","originalKeyword":"固相剪切碾磨"},{"id":"b4e30241-4fe8-4aa5-af17-ce4412007f8e","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"},{"id":"73a7dc65-71ee-4245-bd8c-fc02f9eb5a5c","keyword":"聚氯乙烯","originalKeyword":"聚氯乙烯"},{"id":"a4cafae0-5d6a-477d-9d46-f871f4cfe6c0","keyword":"膨胀石墨","originalKeyword":"膨胀石墨"},{"id":"7b7d7298-1554-4d6e-98c7-7af73c9f7c91","keyword":"石墨烯","originalKeyword":"石墨烯"}],"language":"zh","publisherId":"fhclxb201405015","title":"类石墨烯/氯化聚乙烯-聚氯乙烯复合材料的制备与性能","volume":"31","year":"2014"},{"abstractinfo":"以三氯化铝(AlCl3)作催化剂,将多壁碳纳米管(MWNTS)悬浮在氯仿(CHCl3)溶液中,通过亲电加成反应,对MWNTS进行了侧壁化学修饰,并对化学修饰后的MWNTS作了红外光谱的分析.分别采用机械共混法和溶液共沉淀法制备了CPE/CNTs复合材料,对CPE/CNTs复合材料进行了拉伸性能及流变性能的测试,并利用扫描电子显微镜(SEM)观察了CPE/CNTs复合材料拉伸断面的形貌特征.结果表明:CPE/CNTs复合材料的拉伸强度随碳纳米管加入量的增加而增大,当碳纳米管的加入量为5份时,其拉伸强度最大,与纯氯化聚乙烯的拉伸强度相比,提高了75%;化学修饰后的碳纳米管在氯化聚乙烯基体中有了较好的分散性和相容性;CPE/CNTs复合材料的表观粘度随碳纳米管加入量的增加而逐渐增大.","authors":[{"authorName":"孙艳妮","id":"2b31c4d6-f27c-4993-b84a-9f84e3a478b2","originalAuthorName":"孙艳妮"},{"authorName":"张润鑫","id":"fbfd339f-b8d0-4ed8-bc90-c9591437ce52","originalAuthorName":"张润鑫"},{"authorName":"冯莺","id":"c5ebdf53-e8c6-452f-b8e6-124c45a00021","originalAuthorName":"冯莺"},{"authorName":"赵季若","id":"381ed38a-5e46-429d-8364-e27dfffb3ab2","originalAuthorName":"赵季若"}],"doi":"10.3969/j.issn.1001-4381.2006.z1.033","fpage":"124","id":"5acca347-a025-4ac9-955c-b0e822c72a4c","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"358874b8-5e74-4610-bcf8-de2b99cdc716","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"},{"id":"185495e0-1ab6-49e7-8cf5-eb722910f646","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"ec3b5a20-a063-4817-abae-f007d2befa2c","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"e375923a-18f4-497c-a4fb-732994426bec","keyword":"化学修饰","originalKeyword":"化学修饰"},{"id":"2025e726-6496-4955-9a03-e697e09a3d33","keyword":"流变性能","originalKeyword":"流变性能"}],"language":"zh","publisherId":"clgc2006z1033","title":"氯化聚乙烯/碳纳米管复合材料的制备及其性能研究","volume":"","year":"2006"},{"abstractinfo":"由丙烯酸钠(AANa)与氯化聚乙烯(CPE)制备吸水膨胀性橡塑材料(WSM). 在混炼过程中,由于力化学原因,CPE产生断链并形成链自由基,后者与丙烯酸钠反应形成CPE的丙烯酸钠接枝聚合物,经硫化交联制得吸水膨胀性橡塑材料在水中稳定性好,未发现亲水组分析出. 但AANa和CPE的物理混合物一经浸水,亲水性的AANa将全部析出. 混合物的浸水质量损失率为100%.","authors":[{"authorName":"杨秀利","id":"9cf92a44-e151-4d80-8971-46ddec67bfef","originalAuthorName":"杨秀利"},{"authorName":"张书香","id":"32ab3695-9813-4422-bbae-1d6f1fd4a45b","originalAuthorName":"张书香"},{"authorName":"樊庆春","id":"662eb3cc-574d-425c-8331-2654c2e15f43","originalAuthorName":"樊庆春"},{"authorName":"李效玉","id":"bcd26dd8-8580-4164-9b78-f7b59b552a30","originalAuthorName":"李效玉"},{"authorName":"夏宇正","id":"440e767a-45ab-41a9-897a-2b20148e3ab1","originalAuthorName":"夏宇正"},{"authorName":"焦书科","id":"67d26604-314b-4e3a-bda7-d4bc757eca3a","originalAuthorName":"焦书科"}],"doi":"10.3969/j.issn.1000-0518.2002.08.013","fpage":"764","id":"48d8f036-9412-4d5b-aa08-aaf7720df90f","issue":"8","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"b678ffdf-b712-4bde-be6f-f08d787ae905","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"},{"id":"d4c9bccd-dfbf-4756-90bf-64520c806cd5","keyword":"丙烯酸钠","originalKeyword":"丙烯酸钠"},{"id":"dd880fdf-2410-4f8b-ae80-c4191da7f16a","keyword":"吸水膨胀性橡塑材料","originalKeyword":"吸水膨胀性橡塑材料"},{"id":"eb62e7a4-c237-446d-9a45-f3b8b14d3c77","keyword":"力化学","originalKeyword":"力化学"}],"language":"zh","publisherId":"yyhx200208013","title":"氯化聚乙烯共混丙烯酸钠制备吸水膨胀橡塑材料","volume":"19","year":"2002"},{"abstractinfo":"采用氯化聚乙烯(CPE)作为乙烯醋酸乙烯酯共聚物(EVA)/苯乙烯丙烯腈共聚物(SAN)共混体系的增容剂,用力学性能、电镜等方法研究了EVA/CPE/SAN三元体系的相容性.结果表明,由于CPE与EVA、SAN均有一定程度的相互作用,在EVA/CPE/SAN三元体系中CPE存在于EVA、SAN的界面以减小总的界面能而起了增容作用,从而使该三元体系具有良好的综合力学性能.","authors":[{"authorName":"范丽娟","id":"154314b3-d0db-439a-b915-22d9f6a8f156","originalAuthorName":"范丽娟"},{"authorName":"汪演滨","id":"209b26e4-2bb1-4c6b-8073-85e396d1718d","originalAuthorName":"汪演滨"},{"authorName":"谢静薇","id":"5cde2c77-721c-451f-ae0a-8bb1eb037387","originalAuthorName":"谢静薇"}],"doi":"","fpage":"95","id":"da3c0210-0332-4023-b982-ee18f419fb68","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"efcdd713-49d8-494c-a2f7-0e34a4cb1a2e","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"},{"id":"2276a370-eb9d-42e3-8f76-3e143b57ed24","keyword":"增容作用","originalKeyword":"增容作用"},{"id":"42c099d0-0c9c-45f2-89c3-370ca749064f","keyword":"增容剂","originalKeyword":"增容剂"}],"language":"zh","publisherId":"gfzclkxygc200001029","title":"氯化聚乙烯在EVA/SAN体系中的增容研究","volume":"16","year":"2000"},{"abstractinfo":"通过混炼和压片工艺制备了非晶态合金填充的氯化聚乙烯电磁屏蔽橡胶.通过SEM、XRD、屏蔽效能测试和拉伸试验,研究了填充比对电磁屏蔽效能和拉伸强度的影响.结果表明,材料在10 MHz~100 MHz频率范围内的屏蔽效能最大,可以达到28 dB,具有一定的屏蔽效果.体系中可以形成一定的导电通路,但没有达到体系的阈值.非晶态合金的加入可以提高屏蔽橡胶的低频吸收损耗,屏蔽效能随频率升高呈下降趋势.非晶态合金对橡胶基体的拉伸强度有一定影响.","authors":[{"authorName":"曾敏","id":"db9d348a-b13f-4a74-8f38-a0486c2884a8","originalAuthorName":"曾敏"},{"authorName":"冯猛","id":"aae4136a-db2a-4800-97a6-b5084e0f370f","originalAuthorName":"冯猛"},{"authorName":"伍江涛","id":"66dfb465-0c65-4735-a9d6-99b30f84c199","originalAuthorName":"伍江涛"},{"authorName":"张羊换","id":"4e0b4a81-c52e-467e-ac6d-a796d3ebc9a3","originalAuthorName":"张羊换"},{"authorName":"王新林","id":"d76de940-6093-4f25-a14b-947ac5228d97","originalAuthorName":"王新林"}],"doi":"","fpage":"12","id":"784b31a2-48cb-47a3-9793-f3c369b42bca","issue":"5","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"f59c44c8-04b5-4ee2-b289-ec423347b15d","keyword":"非晶态合金","originalKeyword":"非晶态合金"},{"id":"83de1cfb-8214-407f-aa12-d0090fdba67f","keyword":"电磁屏蔽","originalKeyword":"电磁屏蔽"},{"id":"6639c766-aeab-4dbf-935e-1e1e4183b7db","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"}],"language":"zh","publisherId":"jsgncl200905004","title":"非晶态合金填充氯化聚乙烯的电磁屏蔽性能研究","volume":"16","year":"2009"},{"abstractinfo":"研究了氯化聚乙烯(CPE)溶胀悬浮法接枝甲基丙烯酸-β-羟乙酯(HEMA),考察了反应温度、反应时间、膨胀剂乙酸乙酯(EA)的用量、分散介质水的用量、单体HEMA的用量、引发剂过氧化苯甲酰(BPO)的用量对接枝率和接枝效率的影响.同时,用红外光谱对接枝物进行了定性表征.研究结果表明,采用水作分散介质,乙酸乙酯作膨胀剂的溶胀悬浮接枝体系,在回流温度和一定搅拌速度下,可实现CPE接枝水溶性单体HEMA,且接枝(效)率较高,可获得最高接枝(效)率的投料比为CPE/HEMA/BPO/EA/H_2O=2/2/0.1/7/50(g/g/g/mL/mL),反应温度90℃,反应时间为3 h.","authors":[{"authorName":"熊琼","id":"10d66679-0f87-4dca-a2fc-662c93e4b938","originalAuthorName":"熊琼"},{"authorName":"何培新","id":"c1a6ce15-a5ae-4b3c-8411-35d753525bba","originalAuthorName":"何培新"}],"doi":"","fpage":"36","id":"340dc729-d7f3-47e4-8d78-ebfac98fb566","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"fc5d5f7c-c5df-41c8-a669-899af6d6bd2a","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"},{"id":"b3b51c05-1e74-4487-b512-8182a120120f","keyword":"甲基丙烯酸-β-羟乙酯","originalKeyword":"甲基丙烯酸-β-羟乙酯"},{"id":"b31f8814-43d9-4eb9-8d0b-774399aa3595","keyword":"悬浮接枝","originalKeyword":"悬浮接枝"}],"language":"zh","publisherId":"gfzclkxygc201001011","title":"氯化聚乙烯溶胀悬浮接枝甲基丙烯酸-β-羟乙酯","volume":"26","year":"2010"},{"abstractinfo":"为了研究阻燃增塑剂氯化石蜡、增强剂炭黑N330、轻质氧化镁对CPE防水卷材热老化性能的影响规律,对老化前后的试样进行拉伸、热重分析(TGA)和红外光谱分析等测试,并运用非等温动态热重分析法对最优配方的防水卷材进行寿命估算.结果表明:增塑剂迁移是CPE防水卷材热老化的主要因素,氯化石蜡的最佳用量是15份;轻质氧化镁在非硫化热塑性橡胶中没有热稳定的作用,反而降低了防水卷材耐热老化性能;炭黑N330具有防热老化的作用;运用动态热重法的Doyle和Zsako'积分法判断其老化反应机理并计算出反应活化能E和频率因子A等动力学参数,进而计算出卷材使用寿命与温度的关系.由实验数据估算,CPE防水卷材的使用寿命在59年左右.","authors":[{"authorName":"邹本飞","id":"0296a90e-e508-4002-b2d7-936ae1d6bd31","originalAuthorName":"邹本飞"},{"authorName":"苑会林","id":"7c8fc938-ea50-416e-a16d-27e43f031828","originalAuthorName":"苑会林"},{"authorName":"杨晋娜","id":"24bbf391-3bda-4d0c-ae9c-fbeab5c159e5","originalAuthorName":"杨晋娜"},{"authorName":"王新星","id":"7b62ad79-7d18-40a1-bb3d-7a0d6f397e06","originalAuthorName":"王新星"},{"authorName":"牛萍","id":"86daae26-b385-4fee-a57c-32b1b365adc9","originalAuthorName":"牛萍"}],"doi":"10.3969/j.issn.1671-5381.2011.02.003","fpage":"10","id":"e0997e27-cd71-4e51-b09e-8a293028abe0","issue":"2","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"e5aa7004-a775-4f27-98b5-0812feff7790","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"},{"id":"3210478c-3594-4186-a1cd-3051f30166de","keyword":"热老化","originalKeyword":"热老化"},{"id":"7a0d18dd-abba-4e96-aa60-f3a86a407afe","keyword":"TGA","originalKeyword":"TGA"},{"id":"b0a476ba-5fd6-4a4e-9273-3f5533e53229","keyword":"寿命估算","originalKeyword":"寿命估算"}],"language":"zh","publisherId":"hccllhyyy201102003","title":"非硫化型氯化聚乙烯(CPE)防水卷材耐热老化性能研究及寿命估算","volume":"40","year":"2011"},{"abstractinfo":"主要通过运用红外光谱分析(IR)、静态热稳定(刚果红法)及热分析(DSC、TG)等方法对CPE的热性能进行了研究.结果表明,CPE(135#)与DOW3611P的分子结构基本相同,而DOW3611P的热稳定性要比135#好,同时稀土羧酸盐热稳定剂的加入对提高CPE热稳定性起到了良好的作用.","authors":[{"authorName":"何祥燕","id":"b664ecd4-9986-4b90-b112-207a1ef455f0","originalAuthorName":"何祥燕"},{"authorName":"杨建军","id":"7fa7bf7e-77a3-43d9-b29d-d2f2cc89c0ad","originalAuthorName":"杨建军"}],"doi":"","fpage":"10","id":"501cc93e-21c0-4df0-9af7-e24bddbb7615","issue":"2","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"aa20a710-9517-4ce1-8921-af34c7906cc3","keyword":"红外光谱分析","originalKeyword":"红外光谱分析"},{"id":"84b9b97c-9dd4-48ce-922b-3e7412f02d5f","keyword":"静态热稳定","originalKeyword":"静态热稳定"},{"id":"e622a566-ce79-45d9-96c1-ce2fb0824f95","keyword":"热分析","originalKeyword":"热分析"},{"id":"9f220dfc-9289-45ce-b367-49398ca3b3e1","keyword":"氯化聚乙烯","originalKeyword":"氯化聚乙烯"},{"id":"46c80729-6e09-4eda-b627-9033fa1659f5","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"hccllhyyy201502003","title":"稀土羧酸盐热稳定剂对氯化聚乙烯(CPE)热性能的影响","volume":"44","year":"2015"}],"totalpage":1015,"totalrecord":10149}