{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"分别研究了结构钢-玻璃-可伐合金系统的温度、时间和氮气流量对性能的影响,通过对接插件润湿性、气密性和结合强度的测试确定了熔工艺的最佳工艺参数.结果表明:最佳温度为960℃,时间10 min,氮气流量2.5 m3/h,中间过渡层铁元素富集,金属与玻璃形成互锁结构,明显改善接插件的耐压性能.","authors":[{"authorName":"王咏丽","id":"f92be2af-62f4-40b8-9193-cf091170f197","originalAuthorName":"王咏丽"},{"authorName":"葛昆","id":"037b03e0-11bb-47c9-9dc7-f269d65d4f86","originalAuthorName":"葛昆"},{"authorName":"张然","id":"d463df21-7068-4f0c-9c53-0d01e74dbcfa","originalAuthorName":"张然"},{"authorName":"王琦","id":"73d25197-5848-4700-9917-471a710830fb","originalAuthorName":"王琦"},{"authorName":"甄西合","id":"1621a39f-b666-4682-90fb-a8a35a36f02f","originalAuthorName":"甄西合"}],"doi":"","fpage":"1084","id":"46f42249-136d-44a6-b2b7-67cd36b68ff1","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"e1e993ab-698f-4674-883f-2854067173e0","keyword":"耐高压","originalKeyword":"耐高压"},{"id":"92fafbb7-68a8-4a50-8c4d-ea1dcb7417a2","keyword":"工艺","originalKeyword":"封接工艺"},{"id":"17360045-0956-4d2f-9d9e-0b544b8758ad","keyword":"结合强度","originalKeyword":"结合强度"}],"language":"zh","publisherId":"gsytb201504035","title":"耐高压金属-玻璃的工艺研究","volume":"34","year":"2015"},{"abstractinfo":"为满足工业生产对无铅封玻璃的需求,研制了一种用于钛及钛合金的铋酸盐系玻璃.测试了该铋酸盐玻璃的膨胀系数及润湿角,考察了其与TA1纯钛、TC4钛合金的效果.结果表明,所制备的铋酸盐玻璃的线性膨胀系数为8.96×10-6K-1,可与TA1、TC4实现匹配.此外,该铋酸盐玻璃具有良好的润湿性,在大气气氛下件的强度达1 730 N,高于惰性气体保护下件的强度.最后提出了今后将进一步优化和改进铋酸盐玻璃配方,降低温度,优化工艺,提高件的可靠性.","authors":[{"authorName":"李赞","id":"c31bf376-dafb-42c6-82ab-4f23cca298b8","originalAuthorName":"李赞"},{"authorName":"朱训","id":"e766b2b4-55cd-4e57-bbb5-33d37f31aa30","originalAuthorName":"朱训"},{"authorName":"冯生","id":"8658064a-a75d-458e-b588-687ffdcac7ba","originalAuthorName":"冯生"}],"doi":"","fpage":"35","id":"32fe3daf-cb24-404f-9137-c8540baa76f1","issue":"1","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"2cb849e2-17ef-4aea-8ea6-8779543822e4","keyword":"钛及钛合金","originalKeyword":"钛及钛合金"},{"id":"f8093626-b5cb-41f9-b73d-90ec42301949","keyword":"无铅玻璃","originalKeyword":"无铅玻璃"},{"id":"fcfa1df9-5c62-463e-a23c-a4f33f7a3337","keyword":"铋酸盐系玻璃","originalKeyword":"铋酸盐系玻璃"},{"id":"7cb4e7c5-6276-4870-8bdf-b90bf7196400","keyword":"工艺","originalKeyword":"封接工艺"}],"language":"zh","publisherId":"tgyjz201301010","title":"钛及钛合金用无铅玻璃的制备及性能初探","volume":"30","year":"2013"},{"abstractinfo":"采用硼硅酸盐玻璃作为玻璃材料,并与合金、碳钢等金属,制备了玻璃密封电连接器;制定了合理的玻璃粉体制备工艺及电连接器的制度.实验结果表明:制备的电连接器具有优良的电绝缘性能及很宽的使用温度范围.","authors":[{"authorName":"李拓文","id":"7cc1dff7-ad9a-42a8-8287-a6a18a9adff0","originalAuthorName":"李拓文"}],"doi":"","fpage":"189","id":"5585d2ce-a6a1-486f-90cd-1274868d1ca4","issue":"3","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"89de83ed-a46e-48a4-92ad-6c91c4fce4be","keyword":"电连接器","originalKeyword":"电连接器"},{"id":"57ccb70f-92d5-4f13-bfa3-99f7a17ede75","keyword":"玻璃与金属","originalKeyword":"玻璃与金属封接"},{"id":"0fdae8a1-8eb7-4870-9bee-2882e6f4dcaa","keyword":"工艺","originalKeyword":"封接工艺"},{"id":"cdbe07b9-61c1-407d-bff9-cafe3e9a0721","keyword":"硼硅酸盐玻璃","originalKeyword":"硼硅酸盐玻璃"}],"language":"zh","publisherId":"clyyjxb201403007","title":"玻璃接电连接器的制备","volume":"13","year":"2014"},{"abstractinfo":"电真空玻璃是制造电真空器件的主要材料之一,它广泛应用于真空电子技术、微电子技术、激光和红外技术、电光源、高能物理等方面,在宇航、能源、汽车及化学工业等领域发挥着越来越重要的作用.本文对电真空玻璃的性能及组成与制备工艺作了较为详细的介绍,预测了电真空玻璃的发展方向.","authors":[{"authorName":"肖卓豪","id":"1042b811-653d-4a8b-ae28-d783ee8cca8f","originalAuthorName":"肖卓豪"},{"authorName":"卢安贤","id":"7fec1f04-7ab9-4c3a-b5d3-2e71d9e36a92","originalAuthorName":"卢安贤"},{"authorName":"李岐新","id":"5d5d3733-ef10-4075-9d41-0392022eb63d","originalAuthorName":"李岐新"},{"authorName":"杨东峰","id":"64028a2f-613f-43f6-a761-103e5981810a","originalAuthorName":"杨东峰"}],"doi":"10.3969/j.issn.1001-1625.2005.01.019","fpage":"81","id":"eb837ed9-d566-4a79-a01b-ce413496f505","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"efbb1f99-9fb4-433d-974b-a8066ef09b0b","keyword":"工艺","originalKeyword":"封接工艺"},{"id":"114568dc-80e7-4686-aae2-c791d40ecedf","keyword":"理化性能","originalKeyword":"理化性能"},{"id":"04b565b8-f84c-4ada-b0a2-07f1c05e530b","keyword":"电真空玻璃","originalKeyword":"电真空玻璃"},{"id":"752ee4ff-9e33-4727-b426-093b2f6aeacf","keyword":"无铅玻璃","originalKeyword":"无铅玻璃"}],"language":"zh","publisherId":"gsytb200501019","title":"电真空玻璃的研究现状及进展","volume":"24","year":"2005"},{"abstractinfo":"在连接器产品设计中,需要对形状复杂的不锈钢玻璃组件进行表面处理,使零件表面达到镜面光亮效果,才能在后续电镀过程中更好地保证产品的性能.根据实际生产过程中的需求,研究了不锈钢玻璃组件电镀前表面处理达到镜面光亮效果的工艺过程,探索出一种新型环保不锈钢化学处理液,讨论了溶液各组分和温度、处理时间等工艺参数的影响.通过实验和生产验证,该不锈钢玻璃组件镜面化学处理液的最佳工艺条件为:40 mL/L硫酸,80g/L添加剂XSY,θ为80℃,t为30~ 50 s,其表面可达到镜面般光亮,且玻璃表面无裂纹,保障其表面在电镀过程中具有良好的镀层结合力和表面质量,满足了设计对产品的性能要求.","authors":[{"authorName":"徐苏莉","id":"43e82032-80ae-4365-aa18-23fe88b1c116","originalAuthorName":"徐苏莉"},{"authorName":"徐玉娟","id":"a6e15293-4a94-448a-baf1-3796be947baf","originalAuthorName":"徐玉娟"},{"authorName":"张斌","id":"9035f75b-553b-4cbe-954f-95a133069789","originalAuthorName":"张斌"}],"doi":"10.3969/j.issn.1001-3849.2016.03.005","fpage":"17","id":"f46b05fc-1180-4752-b5c5-3b5a846e3f45","issue":"3","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"87fd2312-f8c3-4339-9408-9cc931dda961","keyword":"不锈钢玻璃组件","originalKeyword":"不锈钢玻璃封接组件"},{"id":"77767c44-1b71-4afe-971a-fe1797eaa4ac","keyword":"浸蚀","originalKeyword":"浸蚀"},{"id":"e4762734-4fbc-48d5-b1ac-ec070b94ef55","keyword":"化学抛光","originalKeyword":"化学抛光"}],"language":"zh","publisherId":"ddjs201603005","title":"不锈钢玻璃组件化学抛光工艺","volume":"38","year":"2016"},{"abstractinfo":"综述了低熔玻璃的组成特点,给出了大量低熔玻璃组成实例.指出了低熔玻璃的低温化和无铅化发展方向,磷酸盐玻璃是首选组成之一.新的制备工艺和新的玻璃形成体系将对玻璃发展起着十分重要的作用.","authors":[{"authorName":"白进伟","id":"c0e9e2bf-c0ab-48cd-8a12-782e5b7d3be7","originalAuthorName":"白进伟"}],"doi":"","fpage":"43","id":"7e4e0e77-88cf-4eb2-83f2-04b2af2dedd6","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"555c2f1b-98ae-448f-b1d0-69b67aefd74b","keyword":"低熔玻璃","originalKeyword":"低熔封接玻璃"},{"id":"ec83edf9-425b-4303-ad05-2dc0b7e47367","keyword":"组成","originalKeyword":"组成"},{"id":"d86ec0fe-7245-4ce4-8dbf-1c2f98b7ca31","keyword":"无铅化","originalKeyword":"无铅化"},{"id":"aa17d652-7c93-4d34-8ec3-103b7539c694","keyword":"低温化","originalKeyword":"封接低温化"}],"language":"zh","publisherId":"cldb200212014","title":"低熔玻璃组成及其发展","volume":"16","year":"2002"},{"abstractinfo":"平板式固体氧化物燃料电池组元材料的一直是困扰SOFC快速发展的瓶颈.实验选定材料的组成,通过球磨7h~8h后,1300℃~1600℃高温熔融,快速水淬冷却,获得玻璃状材料,球磨后过175 μ m的筛得到实验用材料粉末.热膨胀性能测试结果表明,材料的热膨胀系数与电解质和金属连接体在同一数量级,表现出良好的热匹配性.将7种材料用于电解质与连接体的连接,从900℃到1300℃分别进行了实验,确定了S1,S3,S5,S6和S7最适宜的温度.对样品进行热循环试验,用吸红实验检验气密性,结果显示,使用材料S5和S7的样品,效果较为理想.扫描电镜观察接界面的微观形貌表明,材料与电解质连接较好,但与金属连接不够紧密.实验结果显示,S1,S3,S5,S6和S7均可用于金属与陶瓷的,其中,S5,S6和S7的性能更为稳定.","authors":[{"authorName":"韩敏芳","id":"e2de5949-534d-405e-9475-9fdc016d8986","originalAuthorName":"韩敏芳"},{"authorName":"王玉倩","id":"3619a394-e251-4b5e-9b5d-20682e87fc9f","originalAuthorName":"王玉倩"},{"authorName":"蒋先锋","id":"0e986fab-1b8d-4b23-a16e-949dc7e21f1b","originalAuthorName":"蒋先锋"},{"authorName":"彭苏萍","id":"1f250e79-30cf-418c-99b9-dcac25cd8f1d","originalAuthorName":"彭苏萍"}],"doi":"","fpage":"830","id":"1ad10b06-615f-4917-bcee-7b3b3f86586e","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"bf3a890f-7f6e-42db-a170-cdc14efa0f67","keyword":"材料","originalKeyword":"封接材料"},{"id":"2a657c87-b1fc-4f42-a7ed-ebc10209730c","keyword":"固体氧化物燃料电池","originalKeyword":"固体氧化物燃料电池"},{"id":"47ab2321-cd88-423f-8c52-e5b6b2585b66","keyword":"玻璃陶瓷","originalKeyword":"玻璃陶瓷"}],"language":"zh","publisherId":"xyjsclygc2005z2059","title":"固体氧化物燃料电池材料和实验研究","volume":"34","year":"2005"},{"abstractinfo":"低熔玻璃是一种先进的焊接材料,由于其具有低的熔化温度和温度,优良的机械强度和化学稳定性,而在很多领域中得到广泛的应用,实现了玻璃、陶瓷、金属、半导体间的相互.综述了低熔玻璃的研究现状,展望了低熔玻璃向无铅化发展的趋势,指出了无铅低熔玻璃今后的研究方向.","authors":[{"authorName":"郭宏伟","id":"7786a442-315a-4805-941f-debfe1c6ff85","originalAuthorName":"郭宏伟"},{"authorName":"刘新年","id":"8793e77f-8664-4076-9b41-f4dee46b544d","originalAuthorName":"刘新年"},{"authorName":"赵彦钊","id":"327cc02e-e6d5-4486-a87d-dd5fe27f0d4f","originalAuthorName":"赵彦钊"},{"authorName":"高档妮","id":"f0e7a96a-e4f8-4718-99a1-453e75d3b1e9","originalAuthorName":"高档妮"}],"doi":"","fpage":"283","id":"3202692e-aad6-426a-bad8-6898735f887b","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e5f552fd-9bef-4be2-97a9-b905d05d3a29","keyword":"低熔玻璃","originalKeyword":"低熔封接玻璃"},{"id":"0f73a962-80f5-48ad-891c-537231051e00","keyword":"焊接材料","originalKeyword":"焊接材料"},{"id":"8c087669-544d-4c5f-b6db-8e29ec17a337","keyword":"填料","originalKeyword":"填料"},{"id":"64066501-ba45-4426-bbd1-be963ad2e7f5","keyword":"无铅化","originalKeyword":"无铅化"},{"id":"bd7fafb5-e1cf-4a7a-a0a3-cc2c0208481c","keyword":"磷酸盐","originalKeyword":"磷酸盐"}],"language":"zh","publisherId":"cldb2005z2089","title":"低熔玻璃的研究进展","volume":"19","year":"2005"},{"abstractinfo":"玻璃与金属件以其优良的气密性、密封性能、机械强度等综合性能,广泛应用于军品及民品行业中.针对应用于锂亚电池领域的玻璃金属绝缘子生产过程中出现的残次品,玻璃接界面中出现的气泡、漏洞、炸裂等缺陷,分组设计返烧试验,通过对多次返烧绝缘子的玻璃状态、接气密性、抗拉强度、拉伸量、拉拔时间等综合因素的观察和测试,发现多次接过程中,绝缘子气密性、抗拉强度表现出来的量变趋势与玻璃-金属接界面表现出的质变状态高度一致:玻璃整体状态较好,绝缘子性能较好.试验结果表明:第一次后产品综合性能最高,随着次数的增多,玻璃状态、气密性、抗拉强度均有明显下降,产品一致性越来越差;且发现玻璃坯的质地密实、尺寸精准、返烧前对绝缘子进行酸洗表面处理等因素都能有效提高产品的综合性能,并通过反复试验确定了保证产品性能的最多返烧次数.","authors":[{"authorName":"任利娜","id":"b60b9402-41b2-4284-b609-39a0a1aac516","originalAuthorName":"任利娜"},{"authorName":"张建勋","id":"a9c92bf3-4944-400b-b1e3-cbf23be99c8b","originalAuthorName":"张建勋"},{"authorName":"冯生","id":"45ff868a-c60d-4639-b6c1-58032440faa1","originalAuthorName":"冯生"},{"authorName":"鞠鹤","id":"a6700858-2400-4dee-91df-90df93763900","originalAuthorName":"鞠鹤"}],"doi":"10.7502/j.issn.1674-3962.2015.07.16","fpage":"605","id":"018a7b9d-e021-4d41-b3e2-ba4c78305961","issue":"7","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"1b15a9e7-2922-4835-9a32-4177f4da0a5d","keyword":"","originalKeyword":"封接"},{"id":"9da6ed71-eb56-45f5-ae77-245414d573d0","keyword":"绝缘子","originalKeyword":"绝缘子"},{"id":"087dec83-c99e-4eed-9291-c9e0ca8cf573","keyword":"气密性","originalKeyword":"气密性"},{"id":"0c5f4585-3d07-4be6-8c5a-daaae0af9d12","keyword":"抗拉强度","originalKeyword":"抗拉强度"}],"language":"zh","publisherId":"zgcljz201507016","title":"多次对金属-玻璃绝缘子性能的影响","volume":"34","year":"2015"},{"abstractinfo":"高温集热管是槽式光热发电的关键核心部件,其性能将决定光热转换效率.高温集热管要求玻璃-金属部位具有气密性好、强度高、处应力小和抗热冲击性能好等特性.以高温集热管的玻璃-金属的材料、结构、工艺为出发点,总结了其对高温集热管性能的影响,以期推动槽式光热发电事业发展.","authors":[{"authorName":"田英良","id":"59dcf98e-19d1-433a-8b59-576754c523d4","originalAuthorName":"田英良"},{"authorName":"邵艳丽","id":"54f4fe01-30a0-4211-8164-430a725578aa","originalAuthorName":"邵艳丽"},{"authorName":"孙诗兵","id":"09bb99be-2c4d-4b0f-980f-8c05111bf455","originalAuthorName":"孙诗兵"}],"doi":"","fpage":"153","id":"ffa7bd82-9b6c-4428-8359-9ee9f69eaddb","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b3e7d847-0e19-4629-92a5-5dc3d74768aa","keyword":"槽式光热发电","originalKeyword":"槽式光热发电"},{"id":"96e3da6a-0f53-448b-84c6-bfdba35cc81c","keyword":"高温集热管","originalKeyword":"高温集热管"},{"id":"87084be0-793c-4840-8d81-a3ed5fb09dea","keyword":"玻璃-金属","originalKeyword":"玻璃-金属封接"},{"id":"c8132908-0fcc-489b-9a0b-f9d413e45bdb","keyword":"性能","originalKeyword":"封接性能"}],"language":"zh","publisherId":"cldb2013z2042","title":"高温集热管玻璃-金属技术研究现状","volume":"27","year":"2013"}],"totalpage":3939,"totalrecord":39381}