{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以多乙烯多胺类物质和均苯三甲酰氯为反应单体,采用多层界面聚合方法制备质子传导膜.在聚偏氟乙烯超滤膜表面进行多层界面聚合反应形成离子选择性分离膜,该膜具有质子传导能力和VO2+离子阻隔能力.通过系统研究水相溶液中单体种类对质子传导膜性能的影响,结果表明,以四乙烯五胺为水相单体制得的质子传导膜电化学性能较优,其电导率达到8.0×10-3 S/cm;VO2+离子扩散系数降低了一个量级,达到2.4×10-12m2/s;离子选择性系数60,较改性前提高2.2倍.研究发现,膜的离子选择性和膜致密层高分子链结构电荷密度之间存在相关性.","authors":[{"authorName":"郭伟男","id":"89362a5f-d319-42a5-b35f-dfe81f2c2c20","originalAuthorName":"郭伟男"},{"authorName":"吴旭冉","id":"ce8f8564-7b4b-4e9c-8a12-7aeddf4adf1d","originalAuthorName":"吴旭冉"},{"authorName":"青格乐图","id":"c284b8a7-d723-427c-9d4d-82ac3d31b797","originalAuthorName":"青格乐图"},{"authorName":"范永生","id":"562c3106-9a04-4a73-9895-665dd709b4c5","originalAuthorName":"范永生"},{"authorName":"王保国","id":"d823ad0c-fddc-4b40-a153-5528b6afb4b4","originalAuthorName":"王保国"}],"doi":"","fpage":"6","id":"af3e1cdf-ba4d-43c5-9610-2354c0759411","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"46627c08-9413-429e-981f-5ba39e928716","keyword":"质子传导膜","originalKeyword":"质子传导膜"},{"id":"41a4f149-3328-4e76-b037-b6fdd8a6188b","keyword":"多层界面聚合","originalKeyword":"多层界面聚合"},{"id":"96946816-3fb7-4edd-a223-799c4a436ff2","keyword":"电导率","originalKeyword":"电导率"},{"id":"11253dee-d9a6-4a9d-b00e-c34264cf0342","keyword":"离子选择性","originalKeyword":"离子选择性"},{"id":"16488374-3adf-4810-94ff-4978b0b85c5a","keyword":"结构电荷密度","originalKeyword":"结构电荷密度"}],"language":"zh","publisherId":"mkxyjs201404002","title":"多层界面聚合法制备质子传导膜研究","volume":"34","year":"2014"},{"abstractinfo":"针对聚合多层微流控芯片键合,采用热辅助超声波键合方法实现了4层微流控芯片的键合,搭建了多界面温度测试装置,采用埋置热电偶的方法测试了三个被封接界面的温度场,研究了单独超声波作用和热辅助超声波键合法中各界面的温度并进行了比对.温度测试实验结果表明,在顶层热辅助温度70℃、6μm振幅、30kHz频率、100N超声波焊接压力和25s超声波作用时间下,基于热辅助的多层超声波键合方法可以使各键合界面的温度基本一致,从而实现多层微流控器件的多个界面键合质量一致.本文的研究为聚合物微流控器件的超声波多层键合机理研究提供了有益借鉴.","authors":[{"authorName":"罗怡","id":"9c527c72-e479-460d-ad71-88ea4379c9b6","originalAuthorName":"罗怡"},{"authorName":"何盛强","id":"a77be989-5136-47ee-a190-7c1cdbc1d962","originalAuthorName":"何盛强"},{"authorName":"王晓东","id":"383bec6f-ae95-4334-a567-0949ba5f657f","originalAuthorName":"王晓东"}],"doi":"","fpage":"88","id":"ebf879fb-dc5f-4c32-9284-d31eb7884d89","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"0ec9ca50-5fe6-4a54-9327-79f7eb3bec7f","keyword":"多层微流控芯片","originalKeyword":"多层微流控芯片"},{"id":"910b0b2e-3745-4219-ba3c-4d739163ff7b","keyword":"热辅助超声波键合","originalKeyword":"热辅助超声波键合"},{"id":"3185d410-6fc9-4abf-b30f-643ed21c4a29","keyword":"界面温度","originalKeyword":"界面温度"}],"language":"zh","publisherId":"clkxygy201201018","title":"聚合多层微流控芯片超声波键合界面温度研究","volume":"20","year":"2012"},{"abstractinfo":"采用高分辨透射电镜结合振动样品磁强计研究了Fe/Ru多层膜,对不同层厚的Fe/Ru多层膜的界面结构及其对磁性能的影响进行了分析.Fe层很薄时薄膜不连续,岛状分布的Fe颗粒使多层膜显示超顺磁特性.Fe/Ru界面的高分辨电镜观察发现,界面存在粗糙度的不对称性,它是多层膜中产生正磁阻的重要原因.Fe/Ru多层膜的负磁阻在退火后得到较大的提高,表明Fe/Ru多层膜的负磁阻主要来源于界面的粗糙度.","authors":[{"authorName":"耿魁伟","id":"539b5b25-5949-44da-8006-76f5f2484af8","originalAuthorName":"耿魁伟"},{"authorName":"姚若河","id":"d648e581-1d96-4a25-8f9e-f77e15258cf2","originalAuthorName":"姚若河"}],"doi":"","fpage":"1426","id":"090c8f4a-a74a-4e08-a40c-bf3f3bc16e45","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"b57c1dd1-43fc-4533-bdc8-c4b72aedf5ac","keyword":"Fe/Ru多层膜","originalKeyword":"Fe/Ru多层膜"},{"id":"328e131d-8bcb-40d6-9d63-82a5bfcd868e","keyword":"界面","originalKeyword":"界面"},{"id":"4a9d22e7-3f24-4b9e-9b3a-567b63ada575","keyword":"磁性","originalKeyword":"磁性"},{"id":"a60b9b44-4f72-4df0-b72f-1bf9976884b1","keyword":"磁阻","originalKeyword":"磁阻"}],"language":"zh","publisherId":"xyjsclygc201108022","title":"Fe/Ru界面多层膜磁性的影响","volume":"40","year":"2011"},{"abstractinfo":"通过调研国内外多层陶瓷元件界面的研究现状,并结合自身工作,分析了在制备过程中多层陶瓷元件界面所存在的关键问题及其难点:共烧匹配性、扩散、结合性能等,提出了相应的控制措施,展望了其发展方向.并介绍了主导烧结曲线(MSC)、有限成分法(FEM)等相关的理论模型.这些都是有效控制界面品质,获得高性能多层陶瓷元件的关键.","authors":[{"authorName":"杜支波","id":"c0dfc34c-ea64-46ed-ab2b-9d4d1a0b1a0f","originalAuthorName":"杜支波"},{"authorName":"包生祥","id":"d291f8bf-f080-4ec1-b900-ef0df502b358","originalAuthorName":"包生祥"},{"authorName":"彭晶","id":"71aea8cf-e75c-49ed-b62e-d69797259e79","originalAuthorName":"彭晶"},{"authorName":"李世岚","id":"aa1174d6-1e44-4a9a-8d8e-009e32156b95","originalAuthorName":"李世岚"},{"authorName":"马丽丽","id":"24fd9ca6-4185-4ed9-a554-e482d47841f5","originalAuthorName":"马丽丽"}],"doi":"","fpage":"26","id":"a3d80d88-58dc-4c21-b2af-8614955a8b74","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"361d40c0-3929-467a-846f-c1f442cf7ab8","keyword":"多层元件","originalKeyword":"多层元件"},{"id":"00337772-59f8-47c4-97cf-560d54435692","keyword":"界面","originalKeyword":"界面"},{"id":"43883156-04e1-4be9-9df2-e5c2f732bece","keyword":"共烧匹配","originalKeyword":"共烧匹配"},{"id":"573656b8-5d64-4ac5-9292-bb41c3e5cc24","keyword":"扩散","originalKeyword":"扩散"},{"id":"885a0d24-8651-4159-a207-cad58350fb39","keyword":"主导烧结曲线","originalKeyword":"主导烧结曲线"}],"language":"zh","publisherId":"cldb200804007","title":"多层共烧元件界面研究的现状与展望","volume":"22","year":"2008"},{"abstractinfo":"利用多层膜零蠕变法,直接测量 Si( 111)单晶片上沉积的 Ag/Ni多层界面自由能.通过基 片曲率法实时测量 Ag/Ni多层膜升温退火过程中的应力变化,在 450°C保温,发现此时多层膜达到 平衡状态,最终的平衡应力为 0.57MPa, 计算出 Ag/Ni的界面自由能γ int为 0.63 J/m2, 最后结合 XRD测试结果和 SEM剖面形貌,从界面能角度对多层膜的稳定性进行了分析讨论.","authors":[{"authorName":"李松","id":"2660505a-5779-41e6-a21b-5783c8c95bcb","originalAuthorName":"李松"},{"authorName":"张同俊","id":"91e83033-6b96-4e2e-965d-a5515cb7b42d","originalAuthorName":"张同俊"},{"authorName":"安兵","id":"fcc587de-ae68-4483-8939-c3dbee404304","originalAuthorName":"安兵"}],"doi":"10.3969/j.issn.1007-4252.2005.01.021","fpage":"92","id":"c63116b8-85ac-41d7-846c-e2e7851f6548","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"6201951b-249d-4f90-9751-287df1ea0183","keyword":"基片曲率法","originalKeyword":"基片曲率法"},{"id":"80bf94da-b100-4b7f-acc6-362f46d647a3","keyword":"多层膜","originalKeyword":"多层膜"},{"id":"fc2ab38f-769a-455e-bf60-a4e2245d70db","keyword":"界面自由能","originalKeyword":"界面自由能"}],"language":"zh","publisherId":"gnclyqjxb200501021","title":"Ag/Ni多层膜的界面自由能研究","volume":"11","year":"2005"},{"abstractinfo":"目的:减小 Ni/ Ti 多层膜表面粗糙度,提高 Ni/ Ti 多层膜对中子束的反射率。方法采用离子束辅助沉积设备沉积 Ni/ Ti 周期性多层膜,通过不同抛光时间和不同离子能量轰击对多层界面进行清洗抛光;采用反应溅射法,在镀 Ti 层时使用氢气和氩气混合气为工作气体,将 H 原子掺入 Ti 层以改变晶粒结构而影响多层界面状态。结果随着辅助离子源功率的增加,Ni/ Ti 多层膜的表面粗糙度增加;在合适的离子能量下,随着抛光时间的不断增加,Ni/ Ti 多层膜的表面粗糙度逐渐减小。 Ti 层中掺 H 的Ni/ Ti多层膜比未掺 H 的多层膜表面粗糙度小,界面更加清晰。结论低能量的离子轰击条件下,适当的抛光时间能对多层膜实现较好的抛光效果。 Ti 层中掺入 H 原子,抑制了 Ni 原子与 Ti 原子的扩散,减小了 Ti 膜层晶粒大小,从而抑制了表面粗糙度的增加。","authors":[{"authorName":"严彪杰","id":"f02fa781-9f0a-47c2-b2ab-2075f6697c72","originalAuthorName":"严彪杰"},{"authorName":"张向东","id":"582e6a75-c93f-415c-997b-ab8be4fa9157","originalAuthorName":"张向东"},{"authorName":"白彬","id":"ab83042d-aa27-4d72-9dd8-d8d4f4d81a01","originalAuthorName":"白彬"},{"authorName":"杨飞龙","id":"f9a6a786-1932-4d7b-a7ea-65765cdfb4c9","originalAuthorName":"杨飞龙"}],"doi":"","fpage":"47","id":"66911b50-f9b6-4f5f-adee-a52dc42b3024","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"17ecca9b-b59e-4942-9cdf-13c4e37dc925","keyword":"中子超镜","originalKeyword":"中子超镜"},{"id":"de712e79-718e-4f72-9b8e-b95a3d81c674","keyword":"Ni/ Ti 多层膜","originalKeyword":"Ni/ Ti 多层膜"},{"id":"130806ae-f0b6-416b-9cf6-bca8223bf011","keyword":"粗糙度","originalKeyword":"粗糙度"},{"id":"f62be2a6-3372-4b1b-838a-bfd809d9f07e","keyword":"离子抛光","originalKeyword":"离子抛光"},{"id":"825c952e-6e57-42e2-8aba-523619c11d6b","keyword":"反应溅射","originalKeyword":"反应溅射"}],"language":"zh","publisherId":"bmjs201405011","title":"Ni/Ti 多层界面状态优化分析","volume":"","year":"2014"},{"abstractinfo":"综述了近年来纳米多层界面微结构及超硬度效应的研究进展,表明纳米多层膜硬化的主要机制是位错镜像力及hall-petch模型,超模效应及晶格错配引起的交变应变场对硬化起次要作用.","authors":[{"authorName":"徐益","id":"5efa23e8-c198-4891-9b0e-9157a7ec7f33","originalAuthorName":"徐益"},{"authorName":"钟富平","id":"a504cf3e-ae7e-4d1b-9cb8-48641c09d94e","originalAuthorName":"钟富平"},{"authorName":"黄楠","id":"ddae7185-3e36-46e6-870e-eac10ea37628","originalAuthorName":"黄楠"}],"doi":"","fpage":"541","id":"358e3c07-93db-4752-9dd4-5df6453f0ae2","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"16fd11c9-7530-446f-ba04-2046f4682246","keyword":"纳米多层膜","originalKeyword":"纳米多层膜"},{"id":"59fce983-2144-409c-93af-09810e3d6f08","keyword":"界面微结构","originalKeyword":"界面微结构"},{"id":"cffcd56c-bcdd-4148-8e74-44308df2145c","keyword":"超硬效应","originalKeyword":"超硬效应"}],"language":"zh","publisherId":"gncl200405002","title":"纳米多层膜的界面微结构与超硬度","volume":"35","year":"2004"},{"abstractinfo":"由于具有较低的电阻率和成本、较好的机械加工性能、设计上的灵活性,可室温沉积等优点,银基透明导电多层膜已广泛应用于低辐射膜、强电磁屏蔽、低功耗光电子器件特别是柔性电子器件等领域.但由于材料自身的性质与制备条件的差异性,实际制备的金属/电介质(或半导体)透明导电多层界面处往往存在表面等离子体共振、界面导电电子散射、膜层脱层开裂等问题,这些均与多层界面特性密切相关.本文针对这类问题,评述了近年来银基透明导电多层界面研究的进展,并对今后发展给予分析和展望.","authors":[{"authorName":"张晓锋","id":"a64f153f-c8ee-4d1a-9dea-fe6c206b68aa","originalAuthorName":"张晓锋"},{"authorName":"颜悦","id":"0f00749a-665f-4890-8584-cb0e9fbb760d","originalAuthorName":"颜悦"}],"doi":"","fpage":"6","id":"4c2da82f-cfe6-45b2-8c05-15da969e6138","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ea8e33b4-638d-45fb-aab5-2365de249a59","keyword":"银基透明导电薄膜","originalKeyword":"银基透明导电薄膜"},{"id":"373056cf-e93c-4b67-8c3b-a269daf09e14","keyword":"多层膜","originalKeyword":"多层膜"},{"id":"c44bfaa0-1d30-4ec5-887d-91aa3122f5fd","keyword":"界面研究","originalKeyword":"界面研究"},{"id":"c053b383-c5f9-4c7b-b033-9068e38fbc8c","keyword":"表面等离子体共振(SPR)","originalKeyword":"表面等离子体共振(SPR)"}],"language":"zh","publisherId":"gncl2011z1002","title":"银基透明导电多层界面研究进展","volume":"42","year":"2011"},{"abstractinfo":"先采用磁控溅射法在裸光纤表面分别制备银和钛粘结层,再采用电镀法在不同粘结层表面制备镍涂层得到了多层金属涂覆光纤,通过单纤维压出试验测试了金属涂层/光纤的界面结合强度,分析了界面形貌、元素及粘结层材料和工艺条件对结合强度的影响。结果表明:磁控溅射的金属粘结层完好,在金属涂层/光纤界面发生破坏;钛粘结层/光纤的结合能力比银粘结层/光纤的强;在较高液温和较小电流密度的电镀工艺条件下,金属涂层/光纤具有更高的界面结合强度。","authors":[{"authorName":"张银亮","id":"2030402d-7707-410d-aacf-90ca37606c7a","originalAuthorName":"张银亮"},{"authorName":"徒芸","id":"b9865fbb-01c3-48df-8e62-71be0adca423","originalAuthorName":"徒芸"},{"authorName":"涂善东","id":"d8a05c89-3790-4f53-a102-f70732b603bd","originalAuthorName":"涂善东"}],"doi":"10.11973/jxgccl201603002","fpage":"6","id":"99efd5cb-59bf-4461-9907-a4c51ab8dbf2","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"83ca64f8-970e-4b65-8352-647b91b78d24","keyword":"光纤","originalKeyword":"光纤"},{"id":"3c1e4734-0431-42e0-ac72-019ee43b8b35","keyword":"金属涂层","originalKeyword":"金属涂层"},{"id":"d4f141dc-bb4b-4122-8f59-d67b6add0f6a","keyword":"界面结合强度","originalKeyword":"界面结合强度"},{"id":"c150e21f-0778-4b33-b411-4571c3ec68e3","keyword":"单纤维压出试验","originalKeyword":"单纤维压出试验"}],"language":"zh","publisherId":"jxgccl201603002","title":"多层金属涂覆光纤的界面结合强度","volume":"40","year":"2016"},{"abstractinfo":"主要研究非平面界面的新型多层高分子复合材料在不同温度和压力下的吸声性能.制备了非平面界面的新型多层高分子复合材料和平面界面的传统多层高分子复合材料,并在声管中测试其吸声系数.结果表明,在所研究的频率范围内,新型多层高分子复合材料吸声系数大于传统的多层高分子复合材料吸声系数;这种新型多层高分子复合材料吸声系数峰值随温度的升高向低频方向移动,而随压力变化不大.因此,合理设计多层高分子复合材料的界面形状可以提高复合材料的吸声性能.","authors":[{"authorName":"杨雪","id":"30f20d4c-d4af-4b4a-801c-0aeb38ad68d4","originalAuthorName":"杨雪"},{"authorName":"王源升","id":"b8dcdf71-c031-4636-9db4-ef4d4850bae2","originalAuthorName":"王源升"},{"authorName":"朱金华","id":"ee946c17-a694-48a2-aa39-a8dd5cb49e50","originalAuthorName":"朱金华"},{"authorName":"文庆珍","id":"b78a7102-44fc-479e-8edd-a02c4df3a82a","originalAuthorName":"文庆珍"},{"authorName":"余红伟","id":"b0c554f2-4f85-4dce-8c72-8536dbb9326d","originalAuthorName":"余红伟"}],"doi":"10.3321/j.issn:1000-3851.2006.04.004","fpage":"19","id":"9ac0d73e-d6fc-4ea3-a58c-552bae400809","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"645d51dd-41b4-4028-9ed4-e19e609e2555","keyword":"吸声性能","originalKeyword":"吸声性能"},{"id":"a2c4baa5-86a5-4282-be4e-2d6ebb0a953f","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"c42d437a-32d1-4b8f-91a2-377ab0e5b9e7","keyword":"多层高分子","originalKeyword":"多层高分子"},{"id":"8d654f15-bfc5-4bf2-ab98-fbf75aa1606d","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"fhclxb200604004","title":"非平面界面多层高分子复合材料吸声性能","volume":"23","year":"2006"}],"totalpage":2120,"totalrecord":21191}