{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":1,"startPagecode":1},"records":[{"abstractinfo":"通过开环聚合(ROP)、DCC 偶合反应及原子转移自由基聚合(ATRP)合成3种不同臂数(线性、三臂和六臂)的聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)(PCL-PEG-PHEMA)三嵌段共聚物。通过核磁氢谱(1 H NMR)红外谱图证明合成了设计产物。以溶剂挥发法制备胶束并进行载药实验。用激光粒度仪测定胶束粒径、粒径分布及zeta电位,用荧光光谱仪以芘荧光探针法测定临界胶束浓度,用紫外-可见分光光度计表征胶束载药量、包封率。结果表明,3种三嵌段共聚物均能形成稳定的载药胶束,其中具有星形结构的六臂的三嵌段共聚物具有最低的胶束粒径和临界胶束浓度、最高的载药量和包封率。因此,星形六臂的PCL-PEG-PHEMA可作为新的药物载体材料。","authors":[{"authorName":"罗淼","id":"8d69b8e9-1595-4869-9c8c-df919623180f","originalAuthorName":"罗淼"},{"authorName":"冯婷婷","id":"f67d739a-bd2e-4a76-aacf-285db0e840da","originalAuthorName":"冯婷婷"},{"authorName":"蔡孟锬","id":"27f90278-4d16-44e5-b882-e73a3ae2debc","originalAuthorName":"蔡孟锬"},{"authorName":"罗祥林","id":"b9cc1e01-4c0f-4d08-a5b2-ec86983fb763","originalAuthorName":"罗祥林"}],"doi":"10.3969/j.issn.1001-9731.2014.05.006","fpage":"5027","id":"d8a887d1-5c21-4440-ac57-b80d33dc6e45","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d1ae1783-759a-4098-bab9-7ae7fedf9a1f","keyword":"聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)","originalKeyword":"聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)"},{"id":"904ff9a5-b4c9-4cf6-8a28-2d1b4d45016e","keyword":"两亲性聚合物","originalKeyword":"两亲性聚合物"},{"id":"0d3e9133-860c-43ea-99a1-0af7b2332b99","keyword":"原子转移自由基聚合","originalKeyword":"原子转移自由基聚合"},{"id":"d5427161-578c-4a59-a898-9cc1d450223a","keyword":"胶束","originalKeyword":"胶束"}],"language":"zh","publisherId":"gncl201405006","title":"两亲性聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)三嵌段共聚物的合成及成胶束化研究","volume":"","year":"2014"},{"abstractinfo":"以3,3′,4,4′-联苯四羧酸二酐(BPDA)、1,3-双(4-氨基苯氧基)苯(TPER)、3,4′-二氨基二苯醚(3,4′-ODA)、邻苯二甲酸酐(PA)为原料制备了一种共聚封端热塑性聚酰亚胺(TPI)薄膜,采用DSC、TG、万能拉伸试验机、DMA等对其性能进行测试和分析。结果表明:共聚封端TPI薄膜的加工性能提高,同时保持了较高的热稳定性和较好的拉伸性能。其中加入3%PA封端剂制备的树脂综合性能最好,具有较低的熔点(328.8℃)、结晶温度(311.6℃)、损耗模量(4.1×108 Pa)和较高的玻璃化转变温度(210.1℃),采用该树脂制备的TPI薄膜综合性能最佳。","authors":[{"authorName":"陈志平","id":"e96aac4e-51d7-4343-bf30-4c426fabfbc3","originalAuthorName":"陈志平"},{"authorName":"姬亚宁","id":"52f86f2c-9488-4cdc-abd5-dfeb78378bbe","originalAuthorName":"姬亚宁"},{"authorName":"周福龙","id":"132ec1b1-dcde-4335-9af8-c6ded289abbf","originalAuthorName":"周福龙"},{"authorName":"冯羽风","id":"cd61dd85-f941-44dc-a76f-37cd965f53cb","originalAuthorName":"冯羽风"},{"authorName":"冯婷婷","id":"00b33cbf-cb64-412d-b54c-8ec521792dee","originalAuthorName":"冯婷婷"}],"doi":"10.16790/j.cnki.1009-9239.im.2016.10.008","fpage":"43","id":"d08d2784-db27-496d-ad38-0ac3f7656471","issue":"10","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"1a3121e3-6587-4db6-8d41-641805b60124","keyword":"热塑性聚酰亚胺薄膜","originalKeyword":"热塑性聚酰亚胺薄膜"},{"id":"17ed4014-8e2a-4f5a-b8d3-2bdef47d04b9","keyword":"共聚","originalKeyword":"共聚"},{"id":"4978eff1-f414-46c3-b09f-0e680a45cc09","keyword":"PA封端","originalKeyword":"PA封端"},{"id":"dc2039ab-a854-4cd3-8f79-bdc00e803fb5","keyword":"低熔点","originalKeyword":"低熔点"},{"id":"dece32ac-54b4-41cf-b561-4faf864a780e","keyword":"高结晶性","originalKeyword":"高结晶性"}],"language":"zh","publisherId":"jycltx201610008","title":"低熔点高结晶性热塑性聚酰亚胺薄膜的制备及性能研究","volume":"","year":"2016"},{"abstractinfo":"以均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)为单体,采用部分化学亚胺化法制备了聚酰亚胺薄膜,研究了催化剂添加量对聚酰亚胺薄膜性能的影响。结果表明:随着催化剂添加量的增加,酰亚胺化反应速率加快,相同时间内聚合物分子链中酰亚胺环的含量增加,使聚酰亚胺薄膜的聚集态结构有序性增加,力学性能明显提高。采用部分亚胺化法制得的PI薄膜具有良好的热稳定性,催化剂的添加量对其热稳定性影响不大。","authors":[{"authorName":"冯婷婷","id":"77433e1e-bfc6-44df-91a0-6f8086c51638","originalAuthorName":"冯婷婷"},{"authorName":"汪英","id":"d7faa760-d7fc-460b-90ce-b3d496d22ab1","originalAuthorName":"汪英"},{"authorName":"唐小青","id":"57e81b33-b689-4fa5-84a1-beeb51290dc8","originalAuthorName":"唐小青"},{"authorName":"青双桂","id":"9b8dc592-9f5d-4b92-b4a3-79ee79dcbb3a","originalAuthorName":"青双桂"},{"authorName":"周福龙","id":"3c1bf17a-0418-4dea-aa66-c78a601e3ece","originalAuthorName":"周福龙"},{"authorName":"黄孙息","id":"a6ada7ce-a079-45e8-8a72-b1344d0630fd","originalAuthorName":"黄孙息"}],"doi":"10.16790/j.cnki.1009-9239.im.2016.12.007","fpage":"37","id":"0cfc54d6-7d4c-40d4-a6a5-1eba92b5a99b","issue":"12","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"817631d6-452b-4bae-a464-b604d5b85be5","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"f22a08ea-d533-43ea-9369-03dced76ab99","keyword":"部分化学亚胺化","originalKeyword":"部分化学亚胺化"},{"id":"5323bf35-0790-4d00-8b2a-c7f48c59f93a","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"8942dea3-d5b4-497a-bd95-74cea8206d02","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"jycltx201612008","title":"催化剂添加量对部分化学亚胺化法制备聚酰亚胺薄膜的影响","volume":"","year":"2016"},{"abstractinfo":"对PMI泡沫夹层结构整流罩冯卡门锥段成型技术进行了研究,通过对玻璃钢面板及其泡沫夹层结构性能、面板成型、泡沫热成形、泡沫拼接、玻璃钢泡沫夹层结构成型及无损检测等技术研究,确定了玻璃钢外面板、预先固化,然后与泡沫等复合组装,最后铺覆内面板,整体进罐固化的成型工艺.结果表明,玻璃钢面板纵、横向拉伸强度为602、593MPa,模量为26.0、27.2 GPa,满足设计强度≥350MPa、模量≥25GPa的要求;玻璃钢/PMI泡沫夹层结构泡沫密度为(110±10)kg/m3,厚度28mm,纵、横向侧压强度为32.9、30.5MPa、模量为2.31、2.38GPa,满足设计指标侧压强度≥25MPa、模量≥2.0GPa的要求,采用玻璃钢/PMI 泡沫夹层结构分步固化成型工艺研制的首件新型号整流罩冯卡门锥段,满足设计使用要求.","authors":[{"authorName":"赵锐霞","id":"6d0b970d-2e9d-4c82-a1fa-3158a003ccda","originalAuthorName":"赵锐霞"},{"authorName":"尹亮","id":"922fc883-6865-4df3-8393-3eb39221466c","originalAuthorName":"尹亮"},{"authorName":"潘玲英","id":"c65837a1-503f-4cfd-8773-4d5d7a5ed0c9","originalAuthorName":"潘玲英"}],"doi":"10.3969/j.issn.1007-2330.2012.04.014","fpage":"58","id":"a73bd1ed-8b1a-4faf-aaa8-43f7882b4829","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"b4460ffb-fdfa-41e7-bfa6-371091ce4719","keyword":"泡沫夹层结构","originalKeyword":"泡沫夹层结构"},{"id":"6144557c-b4d4-441d-b35e-df3eea9ac029","keyword":"冯卡门锥段","originalKeyword":"冯卡门锥段"},{"id":"12578f5e-24e0-4ce5-9465-6b28d57cf2dd","keyword":"成型技术","originalKeyword":"成型技术"}],"language":"zh","publisherId":"yhclgy201204014","title":"PMI 泡沫夹层结构整流罩冯卡门锥段成型技术研究","volume":"42","year":"2012"},{"abstractinfo":"","authors":[{"authorName":"吴钰重","id":"9c027aa4-b103-451d-8e97-5f473eac2352","originalAuthorName":"吴钰重"}],"doi":"10.3969/j.issn.1000-6826.2015.05.01","fpage":"1","id":"0506a7f0-4c97-4d66-a669-f34c1c16bd2f","issue":"5","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"d9b0bd3a-6769-4f19-8833-73a919a0d3ad","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"jssj201505001","title":"冯春:勤恳为师路,执着科研心","volume":"","year":"2015"},{"abstractinfo":"<正> 第五次(1991)国家自然科学奖已于1991年12月揭晓,共有53项优秀成果获奖,其中属材料与工程科学部分的有6项。1 铝电解过程中若干物理化学问题的研究本项研究获三等奖。主要研究者:邱竹贤,姚广春,冯乃祥,张明杰,李庆峰研究单位:东北工学院","authors":[{"authorName":"钱浩庆","id":"07463c4e-724c-40f4-a647-ba12e9a8b22f","originalAuthorName":"钱浩庆"},{"authorName":"卞文山","id":"48f35d6e-b2c5-4ed6-b884-5c182a20a7c6","originalAuthorName":"卞文山"}],"categoryName":"|","doi":"","fpage":"273","id":"10fb467b-906e-4807-b08d-5f9086f21d43","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[],"language":"zh","publisherId":"1005-3093_1992_3_11","title":"第五次(1991)国家自然科学奖材料与工程科学部分获奖项目介绍","volume":"6","year":"1992"},{"abstractinfo":"板式换热器作为一种高效、节能、紧凑的换热设备,广泛应用于工业中.颗粒污垢作为工业冷却水污垢的主要成分之一,其形成特性一直受到人们的重视.本文对四台商用板式换热器进行了研究,在测试得到其流动传热特性后,完成了三组颗粒污垢实验,研究了几何参数、流动参数以及污垢颗粒浓度对污垢形成的影响.以冯-卡门类比为基础,结合实验数据,完善了板式换热器内颗粒污垢的污垢工程模型,得到的预测关联式具有较好的精度,与实验测试数据对比,偏差均在±6%左右.","authors":[{"authorName":"张冠敏","id":"674f9893-cb23-40fd-a8c1-0d317133b349","originalAuthorName":"张冠敏"},{"authorName":"李冠球","id":"c94092c6-e7c3-46b4-b224-73dba51e4809","originalAuthorName":"李冠球"},{"authorName":"李蔚","id":"8278cd48-86fb-4345-964b-c32f5bb9ccae","originalAuthorName":"李蔚"},{"authorName":"黄涛","id":"24ea653e-85c6-4550-96dd-a913c20e8bd4","originalAuthorName":"黄涛"},{"authorName":"任毓程","id":"aab75758-a60e-4be8-ab83-fb191a20d424","originalAuthorName":"任毓程"}],"doi":"","fpage":"1715","id":"2dee698f-cc8b-4d83-998b-ced9ee5a3e1a","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e36da3ed-df2d-4159-b58c-70559af55386","keyword":"板式换热器","originalKeyword":"板式换热器"},{"id":"a53a6df2-55b6-4ea1-9c4a-d9147fb8b41e","keyword":"颗粒污垢","originalKeyword":"颗粒污垢"},{"id":"89d62779-c6bd-4a99-826e-b8780cceab11","keyword":"污垢工程模型","originalKeyword":"污垢工程模型"},{"id":"4cecb2d0-9a54-49c8-9868-6021b5552d1a","keyword":"冯-卡门类比","originalKeyword":"冯-卡门类比"}],"language":"zh","publisherId":"gcrwlxb201309027","title":"板式换热器内颗粒污垢预测模型与实验","volume":"34","year":"2013"},{"abstractinfo":"2009年7月,东方希望包头稀土铝业引用东北大学冯乃祥教授的新型阴极结构电解槽技术,在300 kA的电解槽系列上进行工业化试验.目前电解槽的槽电压为3.71 V,电解槽的电流效率按97%整流效率计算为91%,平均直流电耗为12 160kW·h/t-Al,本文介绍了300 kA新型阴极结构电解槽的焙烧启动和后期管理的过程与经验.","authors":[{"authorName":"刘军","id":"a9842c93-2ecd-4085-bec0-c216d1e9897e","originalAuthorName":"刘军"},{"authorName":"曹雁冰","id":"87d62009-494a-471a-878d-be0ff03711d7","originalAuthorName":"曹雁冰"},{"authorName":"肖华东","id":"e1498faa-0bf5-4743-a2fc-19f7163113cf","originalAuthorName":"肖华东"}],"doi":"10.3969/j.issn.1671-6620.2010.z1.010","fpage":"33","id":"4d0d4a0b-1c8f-45cf-9567-24795187e273","issue":"z1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"4bbf32c3-d769-4340-b1ca-2dc3e08f6d7c","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"clyyjxb2010z1010","title":"300 kA新型阴极铝电解槽的成功实践","volume":"09","year":"2010"},{"abstractinfo":"提出了一种可以精确测量有耦合的双量子比特系统的耦合项J的大小的方法.通过绝热近似计算得到了系统的哈密顿量的四个能级及其相对应的绝热本征态.利用求解得到的本征态计算分析了两低能级本征态的极化矢量,得到在对称系统中,耦合项J的大小等于使两低能级态的极化矢量长度发生突变时的外加磁场的z分量的值.此外,还利用两个不同的纠缠定义计算分析了系统的纠缠程度.在对称系统中,各个本征态的纠缠度和冯·诺伊曼熵基本相一致.","authors":[{"authorName":"曹惠娟","id":"93ecea3a-c4ea-4dfd-a367-c7d77cbe2e78","originalAuthorName":"曹惠娟"},{"authorName":"胡连","id":"67d59515-5825-4b51-8549-8cabf8b17886","originalAuthorName":"胡连"}],"doi":"10.3969/j.issn.1007-5461.2008.05.011","fpage":"577","id":"beb71004-0210-49e5-b1cb-a13d712c963c","issue":"5","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"d66e8422-b722-4e19-935c-ba37eeeae128","keyword":"量子计算","originalKeyword":"量子计算"},{"id":"39c4a215-7ddb-4ca9-8cbb-094f2054ee1a","keyword":"耦合常数","originalKeyword":"耦合常数"},{"id":"82c8676b-8466-4eb2-81b4-a2378f447fa2","keyword":"简并","originalKeyword":"简并"},{"id":"a056a1a0-efd3-4c80-a17c-32d6f31fb094","keyword":"突变","originalKeyword":"突变"},{"id":"ea557358-0be7-4a05-937b-1381a19043d3","keyword":"量子比特","originalKeyword":"量子比特"}],"language":"zh","publisherId":"lzdzxb200805011","title":"双量子比特系统耦合度J大小的测量","volume":"25","year":"2008"},{"abstractinfo":"<正> 国际金属腐蚀会议自1960年首次在英国伦敦揭幕以来,每三年举行一次。曾先后在纽约、莫斯科、阿姆斯特丹、东京、悉尼和里约热内卢等地召开。今年的第八届国际金属腐蚀会议在德意志联邦共和国(西德)的迈冈兹市(Mainz)举行。中国腐蚀与防护学会(以下简称我会)征集了九篇论文,派四名代表参加。以后中国科学院等部门也分别选派代表参加。行前由国家利委将与会代表组织起来,由笔者任代表团长,我会副理事长沈增祚及左景伊二同志任副团长,理事李铁藩同志任秘书,团员有曹楚南、单义斌、管垣荣、王葆初、高佩钰、冯力群、孙德全、李金桂、王盛水、马重辉、徐仁生、火时中、陆柱、李挺芳等同志。","authors":[{"authorName":"石声泰","id":"f49792d2-6ea2-4ec0-a9f4-f868cf4f4968","originalAuthorName":"石声泰"}],"categoryName":"|","doi":"","fpage":"88","id":"3dadb88c-c71c-4307-a12b-273581c64c66","issue":"3","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[],"language":"zh","publisherId":"1005-4537_1981_3_7","title":"参加第八届国际金属腐蚀会议简记","volume":"1","year":"1981"}],"totalpage":1,"totalrecord":10}