{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文采用激光粒度分析仪测试超硫酸盐水泥粉体粒径,用以反映超硫酸盐水泥的粒径分布;采用机械压力法制备的超硫酸盐水泥干粉压实体,其空隙率可以宏观上反映颗粒间的物理堆积密实度;根据Dinger-Funk数学模型得出粉体最佳颗粒群分布即最紧密堆积颗粒群分布;运用灰色关联分析原理考察粉体实际颗粒群分布与最紧密堆积颗粒群分布的相关性;基于以上分析建立水泥净浆抗压强度与超硫酸盐水泥堆积效应的关系.试验结果表明:超硫酸盐水泥粉体实际颗粒群分布与最紧密堆积颗粒群分布的相关性越高,压实体空隙率越低,抗压强度越高.","authors":[{"authorName":"王淑","id":"9404bb5d-8ce5-4db4-a0a1-17b00edca328","originalAuthorName":"王淑"},{"authorName":"吴雄","id":"a5f370e4-93c5-4297-863e-bd697faae2af","originalAuthorName":"吴雄"},{"authorName":"高育欣","id":"f1e8e99e-5ca3-4cd6-8526-d5b44921eb0b","originalAuthorName":"高育欣"},{"authorName":"余保英","id":"aa1be422-df79-4ddb-a6bd-5a8b12eb24f0","originalAuthorName":"余保英"}],"doi":"","fpage":"2702","id":"062b4d55-07df-4b78-9f37-7d7103609c0a","issue":"9","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"62dc9204-949b-4688-9a9a-5e0f5030886a","keyword":"堆积效应","originalKeyword":"堆积效应"},{"id":"b42b4fbe-c298-4a92-892c-958a7cf0f14e","keyword":"抗压强度","originalKeyword":"抗压强度"},{"id":"576984fc-ac75-46b9-95d9-071686785dc3","keyword":"最紧密堆积","originalKeyword":"最紧密堆积"},{"id":"574041eb-3447-49da-987a-0d7ce1588e28","keyword":"空隙率","originalKeyword":"空隙率"}],"language":"zh","publisherId":"gsytb201509052","title":"超硫酸盐水泥实际与最密集堆积的灰色关联度与抗压强度的关系","volume":"34","year":"2015"},{"abstractinfo":"本文以超导热力学的唯象理论为基础,应用Abrikosov的高场磁通点阵周期场结果,对理想Ⅱ类超导体在Hc2相变点的体积效应进行讨论.经过典型的热力学唯象理论讨论,揭示了理想Ⅱ类超导体在Hc2相变点的相变体积效应的二级相变特征.\n","authors":[{"authorName":"俞建群","id":"6a5eb862-fb5f-4d17-927e-6b3ea05607f2","originalAuthorName":"俞建群"},{"authorName":"徐政","id":"c8309774-7cad-4e56-ab04-5122975817c0","originalAuthorName":"徐政"},{"authorName":"王锋","id":"e75f2a93-87f8-4f0f-9393-d2abf41d9376","originalAuthorName":"王锋"},{"authorName":"金新","id":"5960f666-b18f-4081-add8-f26824ffe792","originalAuthorName":"金新"}],"doi":"10.3969/j.issn.1000-3258.2001.01.004","fpage":"28","id":"e31218fc-325b-4827-85fa-e517c265f904","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"7f6628a1-ed6a-4d98-9041-aa39497e34ab","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"dwwlxb200101004","title":"理想Ⅱ类超导体在相变点的体积效应","volume":"23","year":"2001"},{"abstractinfo":"本文以理想Ⅱ类超导磁化曲线方程为基础,应用典型热力学方法对理想Ⅱ类超导体在Hc1相变曲线上的体积效应进行讨论.经过热力学唯象理论讨论,揭示了理想Ⅱ类超导体在Hc1相变曲线上的相变体积效应的二级相变特征.","authors":[{"authorName":"俞建群","id":"1fee6865-e5e4-4008-b5e8-cdbd8a4f2784","originalAuthorName":"俞建群"},{"authorName":"徐政","id":"9e8f6db8-341a-4431-9427-b990a998d08f","originalAuthorName":"徐政"},{"authorName":"卢定伟","id":"f5d9c07e-4255-4b7c-9e60-8fed3b6ef428","originalAuthorName":"卢定伟"},{"authorName":"金新","id":"84c2c099-ba60-4499-9505-b9fc3468a203","originalAuthorName":"金新"}],"doi":"10.3969/j.issn.1000-3258.2000.05.011","fpage":"388","id":"a1bc8d85-73b2-4ffe-8f54-eb4df53cc7b9","issue":"5","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"77e0802a-9abe-4190-9f02-e5a0206a8546","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"dwwlxb200005011","title":"理想Ⅱ类超导体在Hc1相变曲线上的体积效应","volume":"22","year":"2000"},{"abstractinfo":"采用直径范围为200-600 μm的Sn3.0Ag0.5Cu无铅钎料球在Cu焊盘上制作热风重熔焊点, 将重熔焊点在150 ℃下进行老化, 并对重熔和老化焊点进行剪切测试. 结果表明: 重熔和老化后焊点的剪切强度都随体积的增大而减小, 表现出显著的体积效应. SEM断面观察显示: 较小体积焊点剪切断裂发生在钎料块体内部, 表现出较好韧性; 较大体积焊点则发生在近焊盘的界面处, 呈现脆性断裂特征. 焊盘界面处和钎料内部微观组织SEM观察表明: 小体积焊点内部Ag3Sn化合物以小颗粒状弥散分布, 起到强化作用; 而大体积焊点内部Ag3Sn化合物为树枝网状分布, 表现出硬脆性. 金属间化合物(如Ag3Sn和Cu6Sn5)的形貌和分布对焊点的断裂行为有显著的影响, 是焊点剪切断裂行为体积效应的内在原因.","authors":[{"authorName":"田艳红杨世华王春青王学林林鹏荣","id":"90e81354-ea68-497e-8574-25bd6766141e","originalAuthorName":"田艳红杨世华王春青王学林林鹏荣"}],"categoryName":"|","doi":"DOI:10.3724/SP.J.1037.2009.00688","fpage":"366","id":"6e6b1d93-96be-4206-b1a0-a8f189f949ac","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"b12f40ae-d227-4aca-9663-008def104adf","keyword":"无铅焊点","originalKeyword":"无铅焊点"},{"id":"f21b0598-f42a-41d0-a198-bda9c0dd2efe","keyword":"shear fracture","originalKeyword":"shear fracture"},{"id":"83f9d9fd-028e-418c-8e54-d7736799263a","keyword":"volume effect","originalKeyword":"volume effect"},{"id":"3629684a-21f6-4f5b-95c9-ebeac5266855","keyword":"intermetallic compound","originalKeyword":"intermetallic compound"}],"language":"zh","publisherId":"0412-1961_2010_3_8","title":"Sn3.0Ag0.5Cu/Cu无铅焊点剪切断裂行为的体积效应","volume":"46","year":"2010"},{"abstractinfo":"采用直径范围为200-600 μm的Sn3.0Ag0.5Cu无铅钎料球在Cu焊盘上制作热风重熔焊点,将重熔焊点在150℃下进行老化,并对重熔和老化焊点进行剪切测试,结果表明:重熔和老化后焊点的剪切强度都随体积的增大而减小,表现出显著的体积效应.SEM断面观察显示:较小体积焊点剪切断裂发生在钎料块体内部,表现出较好韧性;较大体积焊点则发生在近焊盘的界面处,呈现脆性断裂特征.焊盘界面处和钎料内部微观组织SEM观察表明:小体积焊点内部Ag_3Sn化合物以小颗粒状弥散分布,起到强化作用;而大体积焊点内部Ag_3Sn化合物为树枝网状分布,表现出硬脆性,金属间化合物(如Ag_3Sn和Cu_6Sn_5)的形貌和分布对焊点的断裂行为有显著的影响,是焊点剪切断裂行为体积效应的内在原因.","authors":[{"authorName":"田艳红","id":"75c664a0-11e7-44ff-9ac1-97466ea5506f","originalAuthorName":"田艳红"},{"authorName":"杨世华","id":"4022db6e-aab4-43ff-834c-638fac83b2d7","originalAuthorName":"杨世华"},{"authorName":"王春青","id":"5504f49f-0769-4a03-aca5-9f4c7846afb5","originalAuthorName":"王春青"},{"authorName":"王学林","id":"b792bf6f-fc7f-4d8c-9030-962c9803e197","originalAuthorName":"王学林"},{"authorName":"林鹏荣","id":"618978eb-e7a4-4a0f-87e3-c73de0dde374","originalAuthorName":"林鹏荣"}],"doi":"10.3724/SP.J.1037.2009.00688","fpage":"366","id":"1a5f2395-2768-439d-ba44-aabb5407a422","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"9cfdcd76-91b7-4ac1-a055-67f0da9e5523","keyword":"无铅焊点","originalKeyword":"无铅焊点"},{"id":"522f4c21-c95e-43a8-858e-ba28a4bfcbe9","keyword":"剪切断裂","originalKeyword":"剪切断裂"},{"id":"b605b826-a7f1-4fdd-8292-8a50f90dc1be","keyword":"体积效应","originalKeyword":"体积效应"},{"id":"1d9f6942-66a1-463c-a7f3-1fef902b0ae6","keyword":"金属间化合物","originalKeyword":"金属间化合物"}],"language":"zh","publisherId":"jsxb201003016","title":"Sn3.0Ag0.5Cu/Cu无铅焊点剪切断裂行为的体积效应","volume":"46","year":"2010"},{"abstractinfo":"以乙酰丙酮铱为前驱体,采用金属有机化合物化学气相沉积(MOCVD)技术在Mo基体上制备Ir薄膜.研究Ir的沉积效果与沉积温度及反应气体(O_2)间的关系.Ir薄膜的沉积速率与沉积温度之间的关系不符合Arrhenius方程,沉积速率与沉积温度绝对温度的倒数呈抛物线关系,当温度为750 ℃时,Ir的沉积速率达到最大值,沉积温度对Ir薄膜的显微形貌有显著影响;O_2的流量对薄膜的成分、形貌及结构等均有显著影响.","authors":[{"authorName":"蔡宏中","id":"84be083d-7589-4944-9131-3739da96ddda","originalAuthorName":"蔡宏中"},{"authorName":"陈力","id":"ce4cf6a9-374e-4006-915e-4abed35893fd","originalAuthorName":"陈力"},{"authorName":"魏燕","id":"ec12d47e-6a32-4ae2-95db-8bbc88fa2c2b","originalAuthorName":"魏燕"},{"authorName":"胡昌义","id":"c27d5ad8-06f5-43fc-8753-7100db654468","originalAuthorName":"胡昌义"}],"doi":"","fpage":"209","id":"ba4c812c-4691-49ce-9bfc-d659cd0f32a8","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"54ad99ed-17a8-48cd-b79f-d39cf9b65ca1","keyword":"MOCVD","originalKeyword":"MOCVD"},{"id":"ca32707a-931b-4945-9094-df670c7b0515","keyword":"铱","originalKeyword":"铱"},{"id":"974106d4-3007-4804-9f11-c344c8779b3c","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"xyjsclygc201002005","title":"铱薄膜的MOCVD沉积效果研究","volume":"39","year":"2010"},{"abstractinfo":"本文以八一钢厂COREX当地原料(球团矿、焦炭和煤)为研究对象,采用物理模拟和数值模拟方法,对多粒径非球形颗粒混合堆积行为进行了研究.首先通过物理实验确定各原料的物性参数,如粒度分布、表观密度、堆密度、静摩擦系数、恢复系数、弹性模量、剪切模量和泊松比等;其次通过物理实验和由组合球构建真实颗粒形状的数值模拟对二元混合堆积角进行研究,在两种结果相吻合的前提下,获得二元混合物之间的滚动摩擦系数,且利用该系数进一步研究三元混合堆积效果.研究结果表明:由二元混合获得的系数可成功应用在三元混合模型之上,最终模型获得了球团矿、多粒度焦炭、多粒度煤两两之间混合堆积及三者之间混合堆积的料堆休止角及内部空隙度信息,为八钢使用当地物料进行装料操作提供了详细的参考数据.","authors":[{"authorName":"李海峰","id":"32d8464b-1f49-4579-be45-3689d4ce3aa8","originalAuthorName":"李海峰"},{"authorName":"李林蔚","id":"24c26ab1-513e-4815-8e4a-57972ea17316","originalAuthorName":"李林蔚"},{"authorName":"游洋","id":"708a9751-7cc8-4f40-94d0-485e9f92f6f9","originalAuthorName":"游洋"},{"authorName":"罗志国","id":"6689a175-80a1-408a-84b0-6884f68f2f1a","originalAuthorName":"罗志国"},{"authorName":"邹宗树","id":"c244dae2-d18a-4b89-916d-f4d788b47d79","originalAuthorName":"邹宗树"}],"doi":"10.14186/j.cnki.1671-6620.2017.01.004","fpage":"19","id":"f275b3ba-54cb-4451-b6ff-da9b89973fb6","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"b895dd64-7d8c-4fb5-b0d3-19f0b6f4c134","keyword":"离散单元法","originalKeyword":"离散单元法"},{"id":"2da0743f-5e1e-4fad-96e2-b631c639166a","keyword":"混合堆积","originalKeyword":"混合堆积"},{"id":"2653edcb-ddce-4a30-9b65-16fcdc9544a1","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"clyyjxb201701004","title":"八钢COREX多粒度非球形颗粒混合堆积的研究","volume":"16","year":"2017"},{"abstractinfo":"采用外标转换谱指数(tSIE)作为淬灭校正因子,通过研究闪烁液及样品总体积、闪烁液用量的影响获得液闪测氚时的最佳计数条件。结果表明,对于22 mL标准玻璃计数瓶,最佳计数体积为7~17 mL,体积过少或过多可导致高到10%以上的测量误差,这主要是由液闪谱仪光电倍增管的面响应特性引起的。在获得的最佳计数体积基础上,对闪烁液的用量进行了研究。为了获得好的测量结果,闪烁液与样品的比例应高于2.4。另外,还通过实验研究了光照对测量结果的影响。在实验室条件下,实验室灯光及自然光所引起的本底辐射在样品静置2h后将不会对测量结果构成影响。","authors":[{"authorName":"陈志林","id":"fcc205ba-e8e5-44ab-bbaf-0ae1f57bcc66","originalAuthorName":"陈志林"},{"authorName":"孟丹","id":"8f6ee3fb-f19e-4c3e-8a20-3de00ade61cc","originalAuthorName":"孟丹"},{"authorName":"李君利","id":"8f8b6b63-9a3b-4e5b-9265-03ff68445e4c","originalAuthorName":"李君利"},{"authorName":"邱睿","id":"6f57e91c-8e39-43db-9512-411ab3190a93","originalAuthorName":"邱睿"},{"authorName":"彭述明","id":"16eda7c4-7c44-465f-9c41-f403df1f0598","originalAuthorName":"彭述明"},{"authorName":"PENG Shuming","id":"7cea5d81-d80b-4f58-9780-397e93e7c4c6","originalAuthorName":"PENG Shuming"}],"doi":"10.11804/NuclPhysRev.31.01.058","fpage":"58","id":"59bca356-74bf-4d68-afab-a12899328c61","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"2f3eaa7b-09a6-4eb0-8772-9d3cd49ff99c","keyword":"氚测量","originalKeyword":"氚测量"},{"id":"618df0e2-2c2d-4ae5-a335-8a52e6ab3ee3","keyword":"液闪","originalKeyword":"液闪"},{"id":"53d6513f-b216-446d-8628-ac29fc9e5f52","keyword":"体积效应","originalKeyword":"体积效应"},{"id":"9b8c031b-6828-476c-9cb8-52d5749e98e4","keyword":"计数条件","originalKeyword":"计数条件"}],"language":"zh","publisherId":"yzhwlpl201401011","title":"考虑体积效应的液闪测氚计数条件优化研究","volume":"","year":"2014"},{"abstractinfo":"已有的水泥粉体颗粒堆积模型有一些不足,不能完全满足水泥粉体颗粒这一特定的体系,为了实现水泥的高效应用,本文借助等径球理论在Horsfied堆积模型基础之上提出一种新的PH堆积模型.满足该模型粒度分布要求的粉体颗粒具有较高的堆积密度和较少的细颗粒含量,同时增加了3~ 32 μm部分颗粒,应用于水泥粉体颗粒体系后,水泥水化样具有较高的抗压强度和较低的孔隙率.","authors":[{"authorName":"张道令","id":"e8a274ba-6e1d-4130-bf4a-d0f877af1548","originalAuthorName":"张道令"},{"authorName":"徐玲玲","id":"5e342e84-8bcc-4f93-ac1d-5550f331fb6f","originalAuthorName":"徐玲玲"},{"authorName":"汪洋","id":"0f6802ee-40e4-4717-a9b7-1a1494d6b6c7","originalAuthorName":"汪洋"},{"authorName":"王文晶","id":"0273ea19-3628-4580-b3fc-31cfec4be58d","originalAuthorName":"王文晶"},{"authorName":"许彦明","id":"99e2b10b-2180-4675-bdcb-c9eb4caf56e0","originalAuthorName":"许彦明"}],"doi":"","fpage":"1937","id":"798d5e84-8913-4164-8b22-ac5f229937b4","issue":"10","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"bfd2bfff-6a29-4376-a50a-acaf29338a29","keyword":"水泥","originalKeyword":"水泥"},{"id":"046380a6-7509-4a8b-a4d4-312c59d63782","keyword":"堆积模型","originalKeyword":"堆积模型"},{"id":"ec170f3b-1a26-44b0-8099-c336ae7582f2","keyword":"计算机模拟","originalKeyword":"计算机模拟"},{"id":"2fff0ee5-0c8a-4ac2-8441-64a0818bb61d","keyword":"抗压强度","originalKeyword":"抗压强度"}],"language":"zh","publisherId":"gsytb201310001","title":"水泥粉体颗粒的新型PH堆积模型的研究","volume":"32","year":"2013"},{"abstractinfo":"细颗粒的堆积既是电厂尾部除尘系统的核心问题,也是航天领域空间环境内限制动力或光学元件性能的关键问题。电场力因具有长程有效性和强可操作性成为控制细颗粒堆积的主要手段。本文通过微观实验研究了高压平行板电场间细颗粒堆积的机理,观察到颗粒在预极化、预荷电、变外电场电压等工况下的堆积形貌,并发展了图像处理的方法统计堆积颗粒数。研究表明,偶极力是外电场下颗粒成链的主因,而颗粒的倒伏则是来自曳力的作用,颗粒链的极限高度主要受外电场场强和颗粒堆积结构的影响。","authors":[{"authorName":"靳星","id":"8052ff49-de5a-41fa-b363-8105a4da7ef6","originalAuthorName":"靳星"},{"authorName":"李水清","id":"19b48b7a-2351-457f-af4f-305380f2eda3","originalAuthorName":"李水清"},{"authorName":"杨萌萌","id":"bdadfb73-a6b5-42f6-a12c-66f13020f1f4","originalAuthorName":"杨萌萌"},{"authorName":"卓建坤","id":"80380e06-a3ac-4bde-893e-e2816986d464","originalAuthorName":"卓建坤"},{"authorName":"姚强","id":"d0b29bf5-a601-49cd-b995-861b4c901a2f","originalAuthorName":"姚强"}],"doi":"","fpage":"533","id":"3d55c61d-d572-4537-91cb-abbf032975de","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a1153cb2-85f9-478a-b968-50539fe29526","keyword":"细颗粒","originalKeyword":"细颗粒"},{"id":"950bd2ca-bbce-475b-a6a8-157c9ed9b652","keyword":"高压电场","originalKeyword":"高压电场"},{"id":"f87f90f7-2b93-4270-b8e6-4328ee436a2b","keyword":"堆积形貌","originalKeyword":"堆积形貌"},{"id":"6ac29cce-11ed-4970-b0e5-28e05795db71","keyword":"偶极力","originalKeyword":"偶极力"}],"language":"zh","publisherId":"gcrwlxb201203043","title":"高压电场内细颗粒堆积机理研究","volume":"33","year":"2012"}],"totalpage":989,"totalrecord":9887}