{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"球锥组合体作为飞行器头部,热外压稳定性是结构设计的主要问题.本文对薄壳结构进行稳定性分析,将临界外压的有限元计算值与试验修正的理论值进行对比,获得有限元分析的修正系数为0.8;然后采用数值和试验相结合的方法、并考虑材料力学性能的温度效应,对复合材料球锥组合体在热外压载荷下的稳定性进行研究,高温下材料性能退化对临界载荷的影响显著,加热不均匀对临界载荷也有一定影响,线胀系数对临界载荷的影响很小.","authors":[{"authorName":"章凌","id":"71685df3-c70e-456b-be2e-918fa01fb02e","originalAuthorName":"章凌"},{"authorName":"王立朋","id":"9d7ee4ac-676f-4489-b2c3-c1c174920533","originalAuthorName":"王立朋"},{"authorName":"莫怡华","id":"b987afa3-ce3a-45fc-8e0c-78a7dd1cf043","originalAuthorName":"莫怡华"}],"doi":"10.3969/j.issn.1007-2330.2012.04.007","fpage":"31","id":"cc41b453-c67b-425d-8abf-a087481adba0","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"6bfc5929-d8d9-40c6-a9fa-9de2edb9d1cc","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"54f7d74a-de87-4221-8022-988458be4ba6","keyword":"球锥组合体","originalKeyword":"球锥组合体"},{"id":"e6122ed5-ba6f-4131-8cc0-e0b17b17f9e8","keyword":"热外压载荷","originalKeyword":"热外压载荷"},{"id":"d7c3decd-fa28-4267-897d-f5e7963a7ab6","keyword":"稳定性","originalKeyword":"稳定性"}],"language":"zh","publisherId":"yhclgy201204007","title":"球锥组合体在热外压作用下的稳定性","volume":"42","year":"2012"},{"abstractinfo":"对组合锥型光纤表面增强拉曼(SERS)探针的结构参数进行了设计与优化.通过建立描述消逝波激发组合锥光纤探针表面纳米颗粒的激发光衰减系数模型,结合激发光经渐变锥段的全反射传输、探针平直段与激发光纤间的模式匹配原理,给出了组合锥型光纤SERS探针的结构参数设计与优化方法.利用该设计与优化方法,在给定光纤和纳米颗粒结构以及周围环境和激发光功率下,进行了光纤SERS探针结构参数的模拟设计.","authors":[{"authorName":"张腊梅","id":"265e0beb-b1e9-49c8-92fd-8cf8bedee1d3","originalAuthorName":"张腊梅"},{"authorName":"廖艳林","id":"13819881-f18b-469e-9002-5219d459f3eb","originalAuthorName":"廖艳林"},{"authorName":"范群芳","id":"ee51114a-0ea4-4de4-acb7-b229382035d4","originalAuthorName":"范群芳"},{"authorName":"曹杰","id":"19036f8f-5456-4dcb-9ccc-b09939947af0","originalAuthorName":"曹杰"},{"authorName":"刘晔","id":"a05a8a02-49c7-4027-a9e5-6faffc3c46a8","originalAuthorName":"刘晔"},{"authorName":"毛庆和","id":"04839d67-ae69-4cbf-af0e-d55790076df3","originalAuthorName":"毛庆和"}],"doi":"10.3969/j.issn.1007-5461.2013.03.018","fpage":"354","id":"e39c19d1-7613-4bd7-a906-a659a6fa376a","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"6128c598-cf9a-4123-9ec2-c36ac2fc97c3","keyword":"纤维与波导光学","originalKeyword":"纤维与波导光学"},{"id":"74b71618-e9df-493d-8b0c-f0c911ca8da5","keyword":"组合锥光纤探针","originalKeyword":"组合锥光纤探针"},{"id":"8aeede53-44a2-45f4-9135-5058c8c79553","keyword":"光衰减效应","originalKeyword":"光衰减效应"},{"id":"6f62f23b-e778-417f-b97b-2cf2c4f8e2ba","keyword":"模式匹配","originalKeyword":"模式匹配"},{"id":"8a643d48-e548-4c3c-9e14-d86cc711042c","keyword":"表面增强拉曼散射","originalKeyword":"表面增强拉曼散射"}],"language":"zh","publisherId":"lzdzxb201303018","title":"组合锥型光纤SERS探针的理论设计与优化","volume":"30","year":"2013"},{"abstractinfo":"本文首先用理论分析的方法证明了将单模光纤组合波导腰部区域的物理模型简化成等效平行波导的近似模型,必须作弱导近似和弱耦合近似.据此理论在弱熔工艺条件下研制成了高性能的,在1.24~1.60μm波长范围内频谱响应平坦的2×2定向耦合器件,其具有哑铃形结构的腰部横截面,满足弱导近似和弱耦合近似的条件.","authors":[{"authorName":"顾炳生","id":"ce44f45d-bbbb-4a4a-a64b-319f505b0182","originalAuthorName":"顾炳生"}],"doi":"10.3969/j.issn.1007-5461.2002.02.019","fpage":"185","id":"d23788ea-890f-40df-a7d2-df5a3e11cb84","issue":"2","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"e0698dd9-2f15-440f-9318-ee35e6c552ee","keyword":"单模光纤","originalKeyword":"单模光纤"},{"id":"ae65667e-d48e-4a68-8a07-fcec253926f6","keyword":"组合波导","originalKeyword":"组合波导"},{"id":"9d951c3a-cc7a-4bc5-befb-36067fb4c749","keyword":"弱导","originalKeyword":"弱导"},{"id":"afaf04e0-7c93-420e-ba92-a92bffc81cb4","keyword":"弱耦合","originalKeyword":"弱耦合"},{"id":"0e9dff0e-746f-49b7-9f9a-19ba19991216","keyword":"弱融","originalKeyword":"弱融"}],"language":"zh","publisherId":"lzdzxb200202019","title":"单模光纤组合波导的模型及熔锥工艺","volume":"19","year":"2002"},{"abstractinfo":"贵金属纳米材料是一类在电子、化工、医药等领域有着广阔应用前景的新型材料,控制贵金属纳米粒子的大小和形状是其获得应用的前提.文中系统地介绍了常见表面活性剂分子有序组合体(胶束、微乳液和溶致液晶)的性质特点和功能特性,并对胶束、微乳液和溶致液晶3种常见表面活性剂分子有序组合体在贵金属纳米材料制备中的应用现状和应用前景进行了评述.","authors":[{"authorName":"李中春","id":"567aafe2-c24a-44c8-bae3-4cefea364ef5","originalAuthorName":"李中春"},{"authorName":"周全法","id":"fa12eebb-2bc6-434e-8f0f-cabe572feca1","originalAuthorName":"周全法"}],"doi":"10.3969/j.issn.1001-1277.2006.01.002","fpage":"3","id":"90c123ff-340f-4916-9893-661f2d7c89e0","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"c702bcab-a88b-482d-8cb6-dfcb768189e3","keyword":"表面活性剂分子有序组合体","originalKeyword":"表面活性剂分子有序组合体"},{"id":"9db7053a-8fc6-4cff-a2a6-f3be3f80db0d","keyword":"贵金属","originalKeyword":"贵金属"},{"id":"0a7f159e-3a69-40c3-8aa8-d2690c864bd5","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"8d8135c0-0b45-4a96-b567-a03da013e286","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"huangj200601002","title":"表面活性剂分子有序组合体及其在贵金属纳米材料制备中的应用","volume":"27","year":"2006"},{"abstractinfo":"在WELSON-A653T洛氏硬度计上,采用自制凹锥形砧座测试微小钢球的硬度,解决了微小钢球在常用平面砧座和V形砧座上易打滑,不易固定,致使压头打在砧座上,损坏压头和砧座的难题,并采用方差分析的方法,将该法与传统试验方法相比较,验证其检测结果与传统法所获检验结果无显著性差异.","authors":[{"authorName":"王新","id":"1ea46d6e-555b-41d3-9448-74d4627aeb48","originalAuthorName":"王新"}],"doi":"10.3969/j.issn.1001-0777.2001.04.009","fpage":"37","id":"03d25e64-52c9-4f86-968f-381b26d7888c","issue":"4","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"f5cdf053-f5de-4cfb-b90b-c36960a14a1d","keyword":"洛氏硬度计","originalKeyword":"洛氏硬度计"},{"id":"d8027b72-71a9-4a84-9c25-cac44d0b6394","keyword":"砧座","originalKeyword":"砧座"},{"id":"1700912e-c622-459c-a28d-6e86e1d839ca","keyword":"方差分析","originalKeyword":"方差分析"}],"language":"zh","publisherId":"wlcs200104009","title":"采用锥型砧座测定微小钢球的硬度及其方差分析","volume":"","year":"2001"},{"abstractinfo":"通过对MgH2+x%Ni(x=0,2,4,8,20,30)样品高能球磨不同时间,研究球磨时间及镍含量对MgH2/Ni体系放氢性能的影响.对合金在球磨过程中的结构变化、组织演变及放氢动力学进行了系统研究.结果表明,当放氢温度高于380°C时,MgH2的放氢动力学与晶粒尺寸、颗粒尺寸及合金中的缺陷数量无关,随着球磨时间增加,镍在MgH2表面分布更加均匀,放氢动力学性能越好.体系放氢后会生成Mg2Ni,从而降低复合体系在循环过程中的储氢性能.在MgH2放氢过程中,镍不仅有助于氢原子的重组,还可以帮助镁的形核长大.","authors":[{"authorName":"解立帅","id":"f0a18512-f3c8-4cb4-bed7-2c252f6cdcde","originalAuthorName":"解立帅"},{"authorName":"李金山","id":"8ef93d3c-0713-4708-93cc-0d2377cddba0","originalAuthorName":"李金山"},{"authorName":"张铁邦","id":"f2cfdb2e-e74f-4945-88c0-335cb3752165","originalAuthorName":"张铁邦"},{"authorName":"寇宏超","id":"63788655-7081-42dc-b6be-6e83bc71462f","originalAuthorName":"寇宏超"}],"doi":"10.1016/S1003-6326(17)60063-3","fpage":"569","id":"d3cedafe-479a-4918-a8db-f2dbd5c7a234","issue":"3","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"f1dcb1cb-4ffc-4809-925a-e46654e26d9d","keyword":"氢化镁","originalKeyword":"氢化镁"},{"id":"9cda25df-d5ee-4af6-ad82-02200b29a516","keyword":"镍","originalKeyword":"镍"},{"id":"6ce419a5-caa4-4b74-9bc1-f919308b8bf7","keyword":"形核","originalKeyword":"形核"},{"id":"8c89225d-fac4-408a-8ff2-093856ba4d48","keyword":"重组","originalKeyword":"重组"},{"id":"dd27cffa-e0c5-47b1-954c-89ebfc40dce5","keyword":"高能球磨","originalKeyword":"高能球磨"}],"language":"zh","publisherId":"zgysjsxb-e201703009","title":"球磨时间及镍含量对MgH2/Ni复合体系放氢性能的影响","volume":"27","year":"2017"},{"abstractinfo":"运用高能球磨法研磨聚合物/Fe3O4混合体系,对样品的穆斯堡尔谱与XRD的测定表明有纳米级αx-Fe2O3颗粒生成;通过改变聚合物种类、比例以及球磨气氛从不同角度考察聚合物对Fe3O4球磨的影响.","authors":[{"authorName":"陈春霞","id":"0b1c4688-9571-4270-9833-cf78221353ba","originalAuthorName":"陈春霞"},{"authorName":"姜继森","id":"f2c243b3-dd58-456d-9c5b-f127f8053a59","originalAuthorName":"姜继森"},{"authorName":"杨燮龙","id":"722eae5b-6d8c-4bb7-a539-2ba906be5e09","originalAuthorName":"杨燮龙"}],"doi":"10.3969/j.issn.1673-2812.2003.03.028","fpage":"424","id":"c5c9b647-c343-431b-87b8-f59407bd5966","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"4d6284b4-68d5-48fc-a715-e56e8978b3a7","keyword":"穆斯堡尔谱","originalKeyword":"穆斯堡尔谱"},{"id":"94046baf-c88c-444c-a4a7-a6626b62c0d7","keyword":"纳米微粒","originalKeyword":"纳米微粒"},{"id":"fbd5a714-d2a7-47c3-a5e6-400b9d1ee7cc","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"741b011d-9868-4529-a103-cb6550361a36","keyword":"氧化铁","originalKeyword":"氧化铁"},{"id":"047023b0-c0e5-4efa-ad15-00a038697df1","keyword":"高能球磨法","originalKeyword":"高能球磨法"}],"language":"zh","publisherId":"clkxygc200303028","title":"聚合物/Fe3O4混合体系高能球磨过程的穆斯堡尔谱研究","volume":"21","year":"2003"},{"abstractinfo":"采用机械球磨技术制备了MgH2-10%Al2O3(质量分数)储氢复合体系,通过XRD、SEM、DSC-TG等检测手段考查了微量Al2O3陶瓷颗粒掺杂对MgH2体系组织结构及解氢性能的影响,并对其相关机理进行了分析.结果表明:机械球磨可有效细化MgH2颗粒;在微量Al2O3陶瓷颗粒与机械球磨的协同作用下,MgH2颗粒的细化效果更为显著;相对于纯MgH2球磨体系而言,微量Al2O3的掺杂有效降低了MgH2体系的解氢温度(降低近50℃),且其解氢速率也有所提高;MgH2-Al2O3储氢复合体系解氢性能的改善主要源于Al2O3陶瓷颗粒对MgH2体系的组织细化效应.","authors":[{"authorName":"朱璞","id":"3e4ad045-30b5-4b00-b2ca-af96a45140cf","originalAuthorName":"朱璞"},{"authorName":"张健","id":"1b400395-bd95-482c-81e6-9cdc38d4073c","originalAuthorName":"张健"},{"authorName":"郭书振","id":"efefbba1-471d-474b-9936-7fee25f11332","originalAuthorName":"郭书振"},{"authorName":"王旭","id":"711ea927-b049-4446-8664-82851a3e3cf4","originalAuthorName":"王旭"}],"doi":"","fpage":"145","id":"c0ffc7b7-0b9d-4f8b-84da-9136ad8f98e6","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a3a9070b-8f09-4dd8-bff9-34080e25673a","keyword":"MgH2","originalKeyword":"MgH2"},{"id":"fe1243f9-6e18-453f-876d-47d18ead5736","keyword":"陶瓷颗粒","originalKeyword":"陶瓷颗粒"},{"id":"c2619930-5308-47e5-abc2-191caa618b04","keyword":"球磨","originalKeyword":"球磨"},{"id":"4e489a11-bcec-4cea-ab07-551b5b772e2e","keyword":"解氢性能","originalKeyword":"解氢性能"}],"language":"zh","publisherId":"cldb2013z2040","title":"MgH2-Al2O3球磨储氢复合体系的组织结构及解氢性能","volume":"27","year":"2013"},{"abstractinfo":"以聚乙烯吡咯烷酮(PVP)为稳定剂,偶氮二异丁腈(AIBN)为引发剂,乙醇和水为分散介质,用分散聚合法制备单分散大粒径聚苯乙烯微球.利用扫描电镜(SEM)、离心式粒度分析仪(PSA)对微球的外观形貌、粒径大小及分布进行了表征.实验表明,介质的特性对聚合物微球的单分散性及粒径分布有显著影响.","authors":[{"authorName":"王东莎","id":"c3d72ad2-196b-40e3-923e-78346462176c","originalAuthorName":"王东莎"},{"authorName":"刘彦军","id":"ed718fc5-a7d7-4d1f-9611-a5812062cbf0","originalAuthorName":"刘彦军"}],"doi":"","fpage":"265","id":"2bdc2807-2fe8-45e7-b9b2-dd5cd9e1a193","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"11f72a1e-c7f2-433c-927b-16ca800f96ad","keyword":"单分散","originalKeyword":"单分散"},{"id":"1c154fd0-1ee9-4539-94e7-63e283c09f70","keyword":"聚苯乙烯微球","originalKeyword":"聚苯乙烯微球"},{"id":"d69b9981-d8f0-4b4f-a74e-296f0c6566b9","keyword":"分散聚合","originalKeyword":"分散聚合"},{"id":"017c122d-630e-4398-9430-4ffa9a44ce5d","keyword":"抗坏血酸","originalKeyword":"抗坏血酸"}],"language":"zh","publisherId":"cldb2007z2093","title":"含抗坏血酸分散聚合体系制备单分散聚苯乙烯微球","volume":"21","year":"2007"},{"abstractinfo":"采用机械球磨法制备了K2 Ti6 O13晶须单独掺杂、以及K2 Ti6 O13晶须与Ni粉复合掺杂的MgH2储氢复合体系,并通过XRD ,SEM ,DSC等检测手段对其微观结构与解氢性能进行表征。结果表明:当K2 Ti6 O13晶须单独掺杂于MgH2时,K2Ti6O13晶须起到助磨细化MgH2晶粒的作用,同时还抑制了MgH2颗粒的团聚,有效降低了MgH2基体的解氢温度,且当K2Ti6O13与MgH2质量配比为3∶7时,MgH2解氢性能的改善效果尤为明显,其解氢温度较纯MgH2球磨体系降低了近75℃;此外,当K2Ti6O13晶须和Ni粉末复合掺杂于MgH2时,得益于K2Ti6O13晶须的助磨细化MgH2晶粒以及Ni固溶于MgH2晶格致使其结构稳定性降低的双重作用,从而使得MgH2基体的解氢温度较K2 Ti6 O13晶须单独掺杂时进一步降低,相对于纯M g H2球磨体系降低了近87℃。","authors":[{"authorName":"张健","id":"7719206e-7fe7-46d9-8adf-f5b2abec44b5","originalAuthorName":"张健"},{"authorName":"汤旺","id":"f913fd89-f376-44fd-bda9-34b005e80cfb","originalAuthorName":"汤旺"},{"authorName":"邵磊","id":"424e5060-57da-459b-94f2-bb951588a4ee","originalAuthorName":"邵磊"},{"authorName":"余小峰","id":"76434f07-19ed-4a54-8421-754e27645840","originalAuthorName":"余小峰"},{"authorName":"龙春光","id":"e9cfd563-bfac-4273-8aef-69b025b32737","originalAuthorName":"龙春光"},{"authorName":"陈荐","id":"2b7979c7-d6cd-46cc-833e-7a1b5bf8d8ff","originalAuthorName":"陈荐"}],"doi":"10.11868/j.issn.1001-4381.2016.11.017","fpage":"101","id":"a2fb4b25-1117-4ef2-818e-0adaca96ca87","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"56cc0249-8271-4b12-b69c-7f8d057e2d0f","keyword":"MgH2","originalKeyword":"MgH2"},{"id":"9cd3fe15-e040-49e2-aba9-1a3270f50125","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"49cbe4de-d6af-4bd4-949b-f0159a318863","keyword":"K2Ti6O13","originalKeyword":"K2Ti6O13"},{"id":"f8015187-7b03-457c-be68-11f96f5b444a","keyword":"Ni","originalKeyword":"Ni"},{"id":"d33c547c-2c6d-431a-883e-2afb122aefa3","keyword":"解氢性能","originalKeyword":"解氢性能"}],"language":"zh","publisherId":"clgc201611017","title":"MgH2-K2Ti6O13-Ni球磨复合体系的微观结构与解氢性能","volume":"44","year":"2016"}],"totalpage":899,"totalrecord":8988}