{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用液相化学还原法,以壬基酚聚氧乙烯醚为修饰剂,水合肼为还原剂,在水及甲醇-水体系中,还原硫酸铜制备了纳米铜颗粒;利用TEM、XRD、FTIR研究了反应条件对纳米铜颗粒稳定性及粒径的影响.结果表明:在甲醇-水体系中,当壬基酚聚氧乙烯醚与硫酸铜数量(摩尔)比达到1:1时,能在纳米铜颗粒表面形成较紧密的吸附层,有助于提高纳米铜颗粒的稳定性,得到较小粒径(20 nm)的纳米颗粒.","authors":[{"authorName":"陈磊","id":"6e2715fa-c244-4509-a6b0-fdad3960513c","originalAuthorName":"陈磊"},{"authorName":"陈建敏","id":"616c80ce-7f5e-4f80-aead-b14c046e3d0a","originalAuthorName":"陈建敏"},{"authorName":"周惠娣","id":"970cafb0-c93b-4511-9ecd-d3cc5156efed","originalAuthorName":"周惠娣"},{"authorName":"贾均红","id":"4a00496f-0aa4-4075-9119-a4398b9c4180","originalAuthorName":"贾均红"},{"authorName":"皮珺","id":"0b45976a-16be-4a71-9275-348d4bfdb621","originalAuthorName":"皮珺"}],"doi":"10.3969/j.issn.1000-3738.2005.07.021","fpage":"65","id":"48133eeb-c4cb-426c-9465-c2165ba49c60","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"de21282f-824d-40db-986e-73f5efb05bfc","keyword":"纳米","originalKeyword":"纳米"},{"id":"150d0848-42d6-44c7-ba59-3503ef802cf9","keyword":"铜","originalKeyword":"铜"},{"id":"ddcb3265-6684-437e-8034-1535dfe4183e","keyword":"制备","originalKeyword":"制备"},{"id":"63ff7f86-23d0-4f03-a59a-b34e438f3646","keyword":"液相化学还原法","originalKeyword":"液相化学还原法"}],"language":"zh","publisherId":"jxgccl200507021","title":"液相化学还原法制备纳米铜颗粒的研究","volume":"29","year":"2005"},{"abstractinfo":"选用液相化学还原法,分别在以羧甲基纤维素钠(Carboxymethyl cellulose sodium,CMC)和葡萄糖为还原剂的体系下制备纳米银颗粒,并进行了对比分析.通过紫外分光光度计、X射线衍射和透射电镜等测试手段对其进行了表征.结果表明,用CMC体系制备的纳米银粉末平均粒径为20~30nm,为多晶结构;用葡萄糖体系制备的纳米银粉末平均粒径为25~35nm,为面心结构.利用抑菌圈法对纳米银的抗茵性能进行测试,结果显示2种体系下制备的纳米银对海洋芽孢杆菌都有很好的抑制作用.","authors":[{"authorName":"孔茉莉","id":"406a916d-23ee-444e-acc1-8efe426e59ff","originalAuthorName":"孔茉莉"},{"authorName":"高冠慧","id":"be331083-2022-4774-ab97-d0dcbd020fe9","originalAuthorName":"高冠慧"},{"authorName":"常雪婷","id":"5f83ad77-6259-43bc-858b-0b46c1d7278e","originalAuthorName":"常雪婷"},{"authorName":"尹衍升","id":"99dc052c-0dcd-45a1-9077-aeecbb72ce0b","originalAuthorName":"尹衍升"}],"doi":"","fpage":"51","id":"8eabb490-0b1b-4e35-9c72-b5b1dee1af6c","issue":"18","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6f1eee15-611b-403d-8c8d-a675d2734160","keyword":"纳米银","originalKeyword":"纳米银"},{"id":"3cd972f4-2467-4d92-b15b-3b6e68c4c15f","keyword":"羧甲基纤维素钠","originalKeyword":"羧甲基纤维素钠"},{"id":"582dab3b-e79d-4e39-9326-525e9a71111b","keyword":"葡萄糖","originalKeyword":"葡萄糖"},{"id":"33fcd290-7380-47d0-a495-14fc5bdd48ce","keyword":"液相化学还原法","originalKeyword":"液相化学还原法"},{"id":"b95d051a-5080-4c9d-bed9-4041588ef47a","keyword":"抑菌性能","originalKeyword":"抑菌性能"}],"language":"zh","publisherId":"cldb201118014","title":"液相化学还原法制备纳米银及抗菌性能研究","volume":"25","year":"2011"},{"abstractinfo":"采用液相化学还原法制备出平均粒径为20~35nm的纳米银,并考察不同温度及PVP用量对纳米银性质的影响.结果表明:当硝酸银与PVP的质量比为1∶4、反应温度为30℃时,纳米银的平均粒径最小,为22.4nm,且其团聚程度最小,粒径分布最佳.在压力10MPa、温度200℃、保温30min的烧结条件下,利用制得的纳米银配制焊膏,连接纯度为99.9%的无氧紫铜板,通过扫描电镜(SEM)观察烧结接头截面形貌,可见烧结界面连接紧密,接头组织有孔隙存在.","authors":[{"authorName":"曹洋","id":"50157e60-406b-4fca-a396-f7314dad358e","originalAuthorName":"曹洋"},{"authorName":"刘平","id":"031501aa-abdb-4a91-af5c-b04839ba7bc1","originalAuthorName":"刘平"},{"authorName":"魏红梅","id":"e7ef6856-dd4b-4062-9ea6-e5e89b00ef2c","originalAuthorName":"魏红梅"},{"authorName":"林铁松","id":"f42a033e-cf8c-4eff-9d00-b4c27cc6d52b","originalAuthorName":"林铁松"},{"authorName":"何鹏","id":"74bdd187-3f23-4d70-a080-123ffb22caa9","originalAuthorName":"何鹏"},{"authorName":"顾小龙","id":"bd7f0db7-742d-44ca-a04c-4d1959d7150d","originalAuthorName":"顾小龙"}],"doi":"10.11868/j.issn.1001-4381.2015.04.014","fpage":"79","id":"cfb391a5-3a53-4b95-82aa-3cdcc6676505","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"7a109e1e-ccfb-4486-9602-833aab5c4e15","keyword":"纳米银","originalKeyword":"纳米银"},{"id":"308323fe-0b49-45aa-ae35-4be920484cb0","keyword":"液相化学还原法","originalKeyword":"液相化学还原法"},{"id":"8b6ea4f8-376c-404e-bc28-54d5008a89d7","keyword":"低温连接","originalKeyword":"低温连接"}],"language":"zh","publisherId":"clgc201504014","title":"液相化学还原法制备纳米银焊膏及其连接性","volume":"43","year":"2015"},{"abstractinfo":"片状纳米银是一种新型纳米材料,与球形纳米银相比具有更好的导电性、催化性、低温超导性等.近年来,国内外关于片状纳米银制备方法的研究较多,并探讨了化学还原法中片状纳米银的形成机理.介绍片状纳米银的化学合成方法并分析其特点,概括了片状纳米银的生长机理和影响因素,并简要分析了其工业化生产的制约因素.","authors":[{"authorName":"王春霞","id":"085123f5-75af-47da-8a22-d0073eed0a0c","originalAuthorName":"王春霞"},{"authorName":"李英琳","id":"8791e4bf-e01b-4a48-91a0-41c8cbedc665","originalAuthorName":"李英琳"},{"authorName":"徐磊","id":"8a0e8dd5-cd35-404b-9d64-da08ae0eec88","originalAuthorName":"徐磊"},{"authorName":"周少波","id":"71c9e883-2195-4e4d-9e00-4216959c4b28","originalAuthorName":"周少波"}],"doi":"10.11896/j.issn.1005-023X.2014.23.024","fpage":"113","id":"ad1c2e4e-a072-403d-b8ae-309424b9bee5","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a717a62e-d234-415b-b1b9-bd2ea42686e2","keyword":"片状纳米银","originalKeyword":"片状纳米银"},{"id":"906cb6b1-662a-489b-98be-25e9ae662ebd","keyword":"液相化学还原法","originalKeyword":"液相化学还原法"},{"id":"2320de59-748d-47b1-88db-78de98ec3ce9","keyword":"生长机理","originalKeyword":"生长机理"}],"language":"zh","publisherId":"cldb201423024","title":"片状纳米银的液相化学制备及研究进展","volume":"28","year":"2014"},{"abstractinfo":"采用液相化学还原法,在1,2-丙二醇体系中,分别使用吐温-80(Tween-80)、聚乙二醇-6000(PEG-6000)和十二烷基硫酸钠(SDS)与聚乙二醇-6000(PEG-6000)的混合物作为修饰剂,利用1,2-丙二醇还原相同母体醋酸镍,制备形貌分别为海绵体、纤维状、雪花状的多晶纳米镍;在水体系中,使用SDS为修饰剂,利用水合肼还原相同母体醋酸镍,制备球形多晶纳米镍.通过X射线衍射(XRD)、透射电子显微镜(TEM)、选区电子衍射(SAED)对纳米镍进行表征.利用傅立叶红外(FTIR)分析初步解释不同形貌纳米镍的形成机理.","authors":[{"authorName":"张锡凤","id":"b760a530-c419-4906-ae1b-66322fd1a739","originalAuthorName":"张锡凤"},{"authorName":"程晓农","id":"f2478c87-a27a-4fab-affa-fe0c7315b988","originalAuthorName":"程晓农"},{"authorName":"殷恒波","id":"90862029-d676-43cc-9535-438d5571fabd","originalAuthorName":"殷恒波"},{"authorName":"吴寅寅","id":"23a60e3c-ba7b-48b3-8f27-6c9f6a7e5ae4","originalAuthorName":"吴寅寅"}],"doi":"","fpage":"1700","id":"e36df7d4-b3a5-46ef-9639-b9c012992672","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5566c8e9-37ca-41e1-9234-71551bb3c90a","keyword":"纳米镍","originalKeyword":"纳米镍"},{"id":"366f1516-839d-44dc-8adc-079530338c0d","keyword":"液相还原法","originalKeyword":"液相还原法"},{"id":"9f8b3a5a-e5f3-44f0-9e1e-ea874518eba2","keyword":"吐温-80","originalKeyword":"吐温-80"},{"id":"2136f490-801c-4f76-88ed-0d3ef1ed9ee2","keyword":"聚乙二醇-6000","originalKeyword":"聚乙二醇-6000"},{"id":"f077df64-4bc6-4639-af10-3af97d040e8d","keyword":"十二烷基硫酸钠","originalKeyword":"十二烷基硫酸钠"}],"language":"zh","publisherId":"zgysjsxb200710025","title":"液相化学还原法制备不同形貌的多晶纳米镍","volume":"17","year":"2007"},{"abstractinfo":"以硫酸铜为铜源,水合肼为还原剂,聚乙烯吡咯烷酮(PVP)为保护剂,十六烷基三甲基溴化铵(CTAB)为分散剂,采用液相化学还原法制备纳米铜溶胶.通过单因素法考察了体系的反应温度、PVP用量、CTAB用量和水合肼浓度等对纳米铜溶胶合成的影响,获得制备高分散稳定纳米铜溶胶的适宜条件.纳米铜溶胶通过紫外-可见吸收光谱(UV-Vis)和透射电镜(TEM)表征,而铜纳米粒子(CuNPs)则通过红外光谱(FTIR)、X射线衍射(XRD)和热分析(TG)检测.研究结果表明:纳米铜溶胶具有较高的稳定性;CuNPs的粒径分布为10~30 nm,其表面吸附有少量的保护剂PVP,有利于防止CuNPs的团聚及氧化,使其具有良好的分散性.","authors":[{"authorName":"杨海君","id":"8c394d54-fa74-4893-8824-655c872f5b6f","originalAuthorName":"杨海君"},{"authorName":"田恐虎","id":"a068c1a2-4c4c-4977-badf-31ecaf89c0eb","originalAuthorName":"田恐虎"},{"authorName":"刘才林","id":"898c1ab7-d4f7-47ab-8b8a-1437a62e4735","originalAuthorName":"刘才林"},{"authorName":"任先艳","id":"302dcc87-65fe-495d-b141-947fc3f087af","originalAuthorName":"任先艳"},{"authorName":"邓永俊","id":"9db3310a-ffef-4c81-aa48-00001724d9fc","originalAuthorName":"邓永俊"}],"doi":"","fpage":"32","id":"5fd2e9fa-57b1-4ef6-a19f-a3f53c2734e9","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"99540201-a25d-4049-a532-ab92418bc26f","keyword":"液相化学还原","originalKeyword":"液相化学还原"},{"id":"f5b5b4f6-948e-4fa7-a5e3-79c5d32a5fb2","keyword":"铜纳米粒子","originalKeyword":"铜纳米粒子"},{"id":"28435eb8-25c9-41e2-9dae-c347b431ba26","keyword":"溶胶","originalKeyword":"溶胶"}],"language":"zh","publisherId":"cldb201308010","title":"液相化学还原法制备分散稳定的纳米铜溶胶","volume":"27","year":"2013"},{"abstractinfo":"研究了化学液相还原反应制备纳米铁粉过程中碱性介质加入对粒子晶化程度、大小、磁性能以及粒子聚集形态的影响.结果表明,加入碱性介质影响还原反应过程,在其它条件相同时,未加碱性介质所制得的纳米铁粉有一定程度的晶化,且粒子相对较大;而加入适当碱性介质所制得的纳米铁粉为非晶态,且粒子明显小于未加碱性介质时.晶化程度的差别导致两者的磁性能明显不同,并使两者粒子具有不同的微观聚集状态.","authors":[{"authorName":"刘颖","id":"9d62cb3d-f5fb-4e13-a63e-eed2945362eb","originalAuthorName":"刘颖"},{"authorName":"赵修臣","id":"ba51718d-8040-45be-a2c4-cbc3952129ba","originalAuthorName":"赵修臣"},{"authorName":"余智勇","id":"7f51b0a4-61fd-4dbd-a580-e8dc228b991d","originalAuthorName":"余智勇"},{"authorName":"邹鑫","id":"7361ac52-fcaf-473d-be90-fb89a21fb460","originalAuthorName":"邹鑫"},{"authorName":"程荆卫","id":"eaf1eafa-4d5d-4a63-9499-ffb4703afbea","originalAuthorName":"程荆卫"}],"doi":"10.3969/j.issn.1000-3738.2003.11.002","fpage":"4","id":"13cb9279-bddb-48bc-b05e-20690f09e24e","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"e18055b0-c020-4ab1-950c-097f4c416264","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"f89be9b0-f8eb-483c-8ed5-4aea9e1098ab","keyword":"纯铁","originalKeyword":"纯铁"},{"id":"78a90991-f496-4344-bd93-56e83e453a75","keyword":"化学制备","originalKeyword":"化学制备"}],"language":"zh","publisherId":"jxgccl200311002","title":"添加碱性介质对用化学液相还原法制备纳米铁粉的影响","volume":"27","year":"2003"},{"abstractinfo":"以PVP为表面活性剂,甲酸铵为还原剂,采用液相还原法制备了纳米银颗粒。采用X射线衍射(XRD)、透射电子显微镜(TEM)和紫外-可见光吸收光谱(UV-Vis)对所制备样品进行表征。结果显示:当PVP与AgNO3的质量比为2.2:1,陈化时间24 h,得到立方块和六棱柱的银混合颗粒。","authors":[{"authorName":"王春霞","id":"d29e6d5b-74bc-4c01-a9e7-517fd0482d7f","originalAuthorName":"王春霞"},{"authorName":"李英琳","id":"94790c06-15cb-40a6-9a45-0bba3eff3ecd","originalAuthorName":"李英琳"},{"authorName":"徐磊","id":"c49892a5-bb29-4c33-a39c-fde493c39a93","originalAuthorName":"徐磊"}],"doi":"","fpage":"30","id":"963be70b-34c6-49f1-87b8-465207b6a4bf","issue":"4","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"b94eb968-00d2-4fd6-b0e0-6dc0572b07f3","keyword":"纳米化学","originalKeyword":"纳米化学"},{"id":"c0ec7c6f-4661-4694-9e7d-53d071b0ff89","keyword":"纳米银","originalKeyword":"纳米银"},{"id":"2ae3268d-229e-467b-bc4e-becee2cbf25b","keyword":"化学还原法","originalKeyword":"化学还原法"},{"id":"5052ab40-c418-476f-b17f-046769daec84","keyword":"PVP","originalKeyword":"PVP"},{"id":"a90caa3c-be58-4fb1-a449-07b229870827","keyword":"陈化时间","originalKeyword":"陈化时间"}],"language":"zh","publisherId":"gjs201404007","title":"PVP保护下纳米银颗粒的液相化学还原法制备及表征","volume":"","year":"2014"},{"abstractinfo":"用液相还原法制备纳米尺寸Ag-50Ni粉末而后热压制得其纳米块体合金,并与传统粉末冶金法制备的粗晶Ag-50Ni合金对比研究了它们在含Cl-介质中的腐蚀电化学行为.结果表明:合金粉末平均粒径约为45nm,真空热压后,晶粒有所长大,但仍为纳米尺度;随Cl-浓度增加,两种尺寸Ag-50Ni合金的腐蚀电流密度均增加,腐蚀速度加快;晶粒尺寸降低后,腐蚀电流密度略有增加,腐蚀速度变快;当极化电位增到某一程度后,两种尺寸Ag-50Ni合金均出现钝化;纳米尺寸Ag-50Ni合金在含0.02mol/L Cl-介质中的交流阻抗谱由双容抗弧组成,其余均由单容抗弧组成,腐蚀受电化学反应控制.","authors":[{"authorName":"曹中秋","id":"30f332e5-75da-4254-8f4b-7bd6a132d809","originalAuthorName":"曹中秋"},{"authorName":"祝溪明","id":"fd0fff5f-c201-4791-ac3a-268bfcadf6af","originalAuthorName":"祝溪明"},{"authorName":"代丽","id":"ab46dc83-149d-4262-9461-c28b9057a597","originalAuthorName":"代丽"},{"authorName":"付雅君","id":"e203bc60-0997-4617-99ef-2bb55125cff9","originalAuthorName":"付雅君"},{"authorName":"李凤春","id":"9b127073-8f4b-4bc0-8211-1394879a2073","originalAuthorName":"李凤春"}],"doi":"10.3969/j.issn.1002-6495.2009.02.028","fpage":"161","id":"aaaaf5af-b711-439a-b952-f718bc7025b3","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"eabe3bf8-f3cd-4193-aee8-fd9cfd788409","keyword":"液相还原","originalKeyword":"液相还原"},{"id":"b74666fc-2aad-42d6-8899-0a738d86f46a","keyword":"Ag-Ni合金","originalKeyword":"Ag-Ni合金"},{"id":"0380e45b-b33b-491a-9b82-005e93aae0f5","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"a5cb54ca-702a-44ea-9a78-fd27963a7354","keyword":"腐蚀电化学","originalKeyword":"腐蚀电化学"}],"language":"zh","publisherId":"fskxyfhjs200902028","title":"液相还原法并热压制备的纳米晶Ag·50Ni合金在含Cl-介质中腐蚀电化学行为研究","volume":"21","year":"2009"},{"abstractinfo":"在液相联氨还原法工艺基础上,对液相还原法制备纳米银粉的还原反应条件(体系温度、分散剂、反应物浓度)进行了研究,得到了优化的反应条件:反应体系温度70℃,反应物浓度[Ag[NH3]2+]=0.02 mol/1和特定的分散剂2#.且生产出平均粒径约为50 nm、大小均匀、灰白色的球状银粉.","authors":[{"authorName":"廖立","id":"473b91a5-6c47-49b3-b20c-05674f4f523c","originalAuthorName":"廖立"},{"authorName":"熊继","id":"4b3aeb53-01b1-4b35-a201-67a083ce3c77","originalAuthorName":"熊继"},{"authorName":"谢克难","id":"0b87850d-fe71-479c-8d45-1c3600c69e41","originalAuthorName":"谢克难"}],"doi":"","fpage":"558","id":"5ae9add9-6a7f-4644-a56c-9a1ccf5de688","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4d586160-5de7-4497-b879-8f7eae764aa2","keyword":"纳米银","originalKeyword":"纳米银"},{"id":"b9e7e511-9241-42c6-9df1-8885867dd243","keyword":"水合联氨","originalKeyword":"水合联氨"},{"id":"849e59e7-85f1-49e3-9781-06a93d47d5f2","keyword":"还原","originalKeyword":"还原"},{"id":"a14bab58-1644-4dee-98b1-bcab3c10f709","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"xyjsclygc200405027","title":"液相还原法制备纳米银粉的研究","volume":"33","year":"2004"}],"totalpage":9423,"totalrecord":94224}