{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"材料设计是复相陶瓷研制过程中必须首先解决的问题,复相陶瓷设计由定性化向定量化方向发展是其必然趋势.宏细微观力学、材料设计专家系统和智能化设计系统应用于陶瓷基复合材料韧化设计方面已取得巨大的进展,并推动陶瓷材料科学与技术的发展.","authors":[{"authorName":"","id":"7ddea51e-1aa2-49cb-a48e-ff5b661d45b1","originalAuthorName":"宋桂明"},{"authorName":"周玉","id":"452a96ef-40de-4ea0-a331-85680a71cbca","originalAuthorName":"周玉"}],"doi":"10.3969/j.issn.1007-2330.1999.01.003","fpage":"12","id":"167b92f2-5940-4fc5-b83b-d6707908472a","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"d52745f0-a1ba-4465-a3d4-bbe8968df9bb","keyword":"陶瓷基复合材料","originalKeyword":"陶瓷基复合材料"},{"id":"1e6b82f8-00a3-485f-ac34-77cd6669279e","keyword":"材料设计","originalKeyword":"材料设计"},{"id":"8157c086-5e8d-4139-bb38-ec531f28c319","keyword":"力学","originalKeyword":"力学"},{"id":"38314703-84a8-4102-955e-f2a176c8a9e2","keyword":"专家系统","originalKeyword":"专家系统"},{"id":"a8fc19f1-c308-4804-9059-aa73b658a5e9","keyword":"人工智能","originalKeyword":"人工智能"}],"language":"zh","publisherId":"yhclgy199901003","title":"复相陶瓷设计进展","volume":"29","year":"1999"},{"abstractinfo":"采用等离子烧蚀装置对ZrCP/W复合材料的烧蚀性能进行了研究.结果表明:ZrCP/W复合材料的线烧蚀率随ZrC含量和烧蚀时间的增加而增大.烧蚀后,在试样表面形成了烧蚀坑和熔融层,熔融层的厚度达到1 mm左右.在烧蚀过程中,烧蚀层中的物相发生了化学反应,并生成了新相.复合材料的主要烧蚀机制是以熔化烧蚀为主,兼有热化学烧蚀.","authors":[{"authorName":"王玉金","id":"5f3236e6-6a2e-449c-a890-2c96f92a364f","originalAuthorName":"王玉金"},{"authorName":"周玉","id":"5c046da1-40e5-4811-8d7e-86f24dacecb8","originalAuthorName":"周玉"},{"authorName":"","id":"a4662894-9785-4b27-b8cc-053e163dccb0","originalAuthorName":"宋桂明"},{"authorName":"张太全","id":"6035d033-8743-4550-bfb1-66872ef17b53","originalAuthorName":"张太全"},{"authorName":"贾德昌","id":"4f15a3bf-7b66-43f1-b754-1034af737b40","originalAuthorName":"贾德昌"}],"doi":"","fpage":"830","id":"22c07599-63dc-47e1-b69d-63f18b20bd63","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"6a569efc-3f03-415d-9dfc-fdf54a03c415","keyword":"ZrCP/W复合材料","originalKeyword":"ZrCP/W复合材料"},{"id":"9165dfa5-0f93-4cd4-8f45-0efbe14a7a35","keyword":"等离子烧蚀","originalKeyword":"等离子烧蚀"},{"id":"117da97c-62de-4d79-95e9-e1fb40e41dc9","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"xyjsclygc200905018","title":"ZrCP/W复合材料的等离子烧蚀行为","volume":"38","year":"2009"},{"abstractinfo":"SiCw/ZrO2(6mol%Y2O3)陶瓷的实验研究表明,晶须桥联和裂纹偏转是其主要增韧机制在两种机制协同增韧的基础上,建立了晶须增韧的数值模型,对材料的三点弯曲断裂过程的计算结果表明:载荷/位移曲线呈锯齿状,是由于晶须桥联作用使得裂纹扩展与停止这一过程反复出现而引起的;随晶须含量增加,复合材料韧性提高,晶须桥联和裂纹偏转两种增韧贡献都增加,但是占主导地位的增韧机制由裂纹偏转机制逐步过渡到裂纹桥联机制.计算结果与材料的测试结果很吻合.","authors":[{"authorName":"","id":"70fd70a4-7631-47e5-92b9-7104b1181adb","originalAuthorName":"宋桂明"},{"authorName":"周玉","id":"adafd824-bd9c-47f3-8e4e-9cb35b9e843e","originalAuthorName":"周玉"},{"authorName":"林广涌","id":"932cccb9-53d0-4cc4-9b3f-7a6a8dc91be7","originalAuthorName":"林广涌"},{"authorName":"贾德昌","id":"48d38746-4b23-4dfa-8a00-8af6c44d1cb4","originalAuthorName":"贾德昌"},{"authorName":"雷廷权","id":"f7e908bf-bf29-4c07-94ff-a9c6c3614702","originalAuthorName":"雷廷权"}],"categoryName":"|","doi":"","fpage":"691","id":"418142ba-388c-4def-9ac9-c3e5e68955a4","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f0c674e8-17f2-46e4-ad4e-0983fa9bd01b","keyword":"陶瓷复合材料","originalKeyword":"陶瓷复合材料"},{"id":"84c4aae2-9863-4e23-b286-ec11ab67042f","keyword":"null","originalKeyword":"null"},{"id":"ee26063d-7f8a-47f4-bc0e-44ada1398fe7","keyword":"null","originalKeyword":"null"},{"id":"53cb28db-e4ff-4767-abbc-309d078a6b26","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_1998_5_12","title":"SiCw/ZrO2(6mol%Y2O3)陶瓷中晶须增韧的数值模型","volume":"13","year":"1998"},{"abstractinfo":"采用热压烧结工艺制备了TiCp/W系列复合材料,分析测试了温度和TiC含量对复合材料的热物理性能的影响规律.结果表明:随着温度的升高,复合材料的定压比热和平均线膨胀系数单调增大,热扩散率稍有减小,热导率略有增大.随TiC含量的增加,复合材料的定压比热和平均线膨胀系数线性增大,基本满足混合定律.热扩散率和热导率对材料的组织结构比较敏感,二者均随TiC含量的增加而急剧减小.热导率的实测值大大低于理论计算值,这主要是由晶界和孔洞等缺陷对导热粒子的强烈散射作用造成的.","authors":[{"authorName":"王玉金","id":"362ca0d0-8f79-4202-86f8-1fb8d0dec325","originalAuthorName":"王玉金"},{"authorName":"周玉","id":"3f5f0806-5f95-47cb-97ef-7bd75c85deb7","originalAuthorName":"周玉"},{"authorName":"","id":"82cd4dc4-b561-41ae-a118-080c0b6702da","originalAuthorName":"宋桂明"},{"authorName":"雷廷权","id":"575d55a2-e0b1-4143-bb89-3190c791a11a","originalAuthorName":"雷廷权"}],"doi":"","fpage":"386","id":"423d595b-9e38-40ca-b62b-7afc7c4476e4","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4e72c94e-c26d-4e19-873c-1b90db3de1e5","keyword":"W基复合材料","originalKeyword":"W基复合材料"},{"id":"5af87f7a-4f90-49cf-b5c5-3b092487b84b","keyword":"TiC颗粒","originalKeyword":"TiC颗粒"},{"id":"ba5ed589-96b3-4bcf-abdc-253bf0cd53b0","keyword":"热物理性能","originalKeyword":"热物理性能"}],"language":"zh","publisherId":"xyjsclygc200006007","title":"TiCp/W复合材料的热物理性能","volume":"29","year":"2000"},{"abstractinfo":"用自制的氧乙炔烧蚀装置对ZrCp/W复合材料烧蚀性能进行了研究。结果表明:复合材料的质量烧蚀率和线烧蚀率由低到高的排列顺序为40%ZrCp(体积分数,下同)/W<30%ZrCp/W<W;钨中加入ZrC颗粒明显提高了钨的抗烧蚀性能,而且ZrC颗粒含量越高,材料抗烧蚀性能越好。并用多波长高温计对烧蚀表面温度进行在线测试。复合材料烧蚀机理是W,ZrC的氧化烧蚀。","authors":[{"authorName":"","id":"f8372e00-9bb6-43db-8161-8b2b44cff6a2","originalAuthorName":"宋桂明"},{"authorName":"王玉金","id":"e01641c3-2e93-4956-a7d6-93df17e61e28","originalAuthorName":"王玉金"},{"authorName":"周玉","id":"5a20e742-fd79-4f3c-9e3d-c0e2bd8171cd","originalAuthorName":"周玉"},{"authorName":"郭英奎","id":"843d80f7-8d82-4d5c-8971-291f9549735b","originalAuthorName":"郭英奎"},{"authorName":"温广武","id":"45243595-bea1-4cab-a31a-b6f164ecc7fa","originalAuthorName":"温广武"}],"doi":"","fpage":"101","id":"5c04bac0-2f95-4ab7-913a-3fc59a98aceb","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c602596a-2f35-4dd5-aad7-c4532ffbef98","keyword":"ZrCp/W复合材料烧蚀性能氧化烧蚀","originalKeyword":"ZrCp/W复合材料烧蚀性能氧化烧蚀"}],"language":"zh","publisherId":"xyjsclygc200102006","title":"ZrCp/W复合材料的烧蚀性能","volume":"30","year":"2001"},{"abstractinfo":"建立了晶须和相变复合增韧陶瓷的复合增韧模型,其中晶须增韧考虑了裂纹桥联和裂纹偏转两种机理;相变增韧在考虑体膨胀作用的基础上,用切应变影响因子来考虑切应变增韧效应.计算结果表明,相变增韧、桥联增韧和裂纹偏转增韧存在相干性,相变增韧降低晶须增韧效果,而晶须增韧促进相变增韧效果,SiCw/ZrO2(2mol%Y2O3)/Al2O3断裂韧性的计算结果与实验结果吻合.","authors":[{"authorName":"","id":"39bc30c1-2fef-4a1a-92c1-55589307a7b6","originalAuthorName":"宋桂明"},{"authorName":"周玉","id":"67079427-3475-42fc-80e0-c515a8596584","originalAuthorName":"周玉"},{"authorName":"孙毅","id":"9b9f9012-566a-451e-aa44-c912ee25dab8","originalAuthorName":"孙毅"},{"authorName":"雷廷权","id":"403aadcc-f0c1-4000-b394-e5a9e58f2a1e","originalAuthorName":"雷廷权"}],"categoryName":"|","doi":"","fpage":"195","id":"648ed4a2-d6e6-4c16-970a-4a658e84c3e6","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"bd879dea-e8cf-4f85-b79c-ad5fdbe5ce51","keyword":"复合增韧模型","originalKeyword":"复合增韧模型"},{"id":"0367e480-8ffd-4dac-98bb-a0c87319c740","keyword":"null","originalKeyword":"null"},{"id":"5347aa01-a7ba-41f9-ae31-a44fced891ff","keyword":"null","originalKeyword":"null"},{"id":"0cc212d3-0e77-4010-bca0-dfef895001bd","keyword":"null","originalKeyword":"null"},{"id":"8a13965f-0456-4d5d-b51c-f8b100343d58","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_1998_2_4","title":"晶须和相变复合增韧陶瓷的复合增韧模型","volume":"13","year":"1998"},{"abstractinfo":"综述了钨及钨合金制备、热加工及应用等方面的发展.详细分析了改善和提高钨及钨合金的塑性和再结晶温度的方法及钨的固溶强化和弥散强化,从而提出了钨合金的设计和制备的发展方向.","authors":[{"authorName":"王玉金","id":"d198706e-c4bf-4fa2-b41f-0c24e72fbe81","originalAuthorName":"王玉金"},{"authorName":"张太全","id":"93abce61-da33-455a-892d-7e28abc517ea","originalAuthorName":"张太全"},{"authorName":"周玉","id":"866723b9-d15b-444f-b722-72d75202a971","originalAuthorName":"周玉"},{"authorName":"雷廷权","id":"58a8bae7-fa57-4151-9a83-4e0438971b81","originalAuthorName":"雷廷权"},{"authorName":"","id":"ec649512-0a65-40c2-8513-95ff74dd8a0a","originalAuthorName":"宋桂明"}],"doi":"","fpage":"65","id":"8d88f9bd-29c7-4705-b00b-0fa3345ca90c","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"d1c2c85d-3575-4678-be51-08cbb68ac32a","keyword":"钨及钨合金","originalKeyword":"钨及钨合金"},{"id":"93ea746c-0b71-4de5-8ca4-5d03d189ffa3","keyword":"应用","originalKeyword":"应用"},{"id":"6e2914d1-acf9-4ac5-a969-95ea052bb48d","keyword":"制备","originalKeyword":"制备"},{"id":"fe0e27a7-0eda-45e2-82ad-66e905ab0bbc","keyword":"设计","originalKeyword":"设计"}],"language":"zh","publisherId":"xyjsclygc2009z1015","title":"钨合金的设计窗口研究进展","volume":"38","year":"2009"},{"abstractinfo":"通过测量力学性能和热物理性能,研究了热压烧结碳纤维增强TiC复合材料(Cr/TiC.20vol%碳纤维)的抗热震性能.结果表明:碳纤维加入到TiC基体中,提高了复合材料的抗弯强度和断裂韧性,降低了复合材料的弹性模量和热膨胀系数,进而使得复合材料的抗热震断裂参数R,抗热震损伤参数RTV和裂纹稳定性参数RST都得以提高.复合材料热震残留强度在热震温差超过900℃后迅速下降.复合材料热扩散率的提高有利于抗热震性能的提高.复合材料增强机理是纤维承载,韧化机理是纤维桥联和纤维拔出.","authors":[{"authorName":"","id":"264d6b78-a5f0-4ac4-9389-1456594a3f30","originalAuthorName":"宋桂明"},{"authorName":"武英","id":"a5ec05c9-c58b-42f9-83f0-1fdb218a382b","originalAuthorName":"武英"}],"doi":"10.3969/j.issn.1001-4381.2001.12.004","fpage":"16","id":"9dbcfebb-acbb-4f10-8f5a-bd0f605e282e","issue":"12","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"5828438b-1daf-446c-869c-bbe8d7a7a270","keyword":"陶瓷基复合材料","originalKeyword":"陶瓷基复合材料"},{"id":"a99c0ae8-9bb2-4a27-8eb5-517a3aa905ed","keyword":"碳化钛","originalKeyword":"碳化钛"},{"id":"643c14eb-10df-46e3-85ee-e70d62c32592","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"d8c92426-a7fe-4899-ad3f-f050124e34d1","keyword":"抗热震性能","originalKeyword":"抗热震性能"}],"language":"zh","publisherId":"clgc200112004","title":"碳纤维增强TiC复合材料的抗热震性能","volume":"","year":"2001"},{"abstractinfo":"采用热压烧结工艺制备了碳纤维增强TiC复合材料(20v0l%碳纤维),研究了热压烧结温度对力学性能的影响和碳纤维对复合材料高温强度的增强作用.结果表明:采用球磨湿混工艺将易于团聚的短碳纤维均匀地分散在TiC基体中,Cf/TiC复合材料最佳热压烧结温度为2100 C,Cf/TiC复合材料的室温抗弯强度为593MPa,断裂韧性为6.87MPa@m1/2,1400C时的高温抗弯强度为439MPa.定量分析了碳纤维对复合材料的增强和增韧效果.","authors":[{"authorName":"","id":"560b0ca7-2b57-41f5-8fb6-a02927397271","originalAuthorName":"宋桂明"},{"authorName":"武英","id":"5ff0835d-f737-4611-bd9b-6cc72c7cb8ad","originalAuthorName":"武英"}],"doi":"10.3969/j.issn.1001-4381.2001.09.001","fpage":"3","id":"abe82a49-0f2b-4249-ad91-750785cc85f2","issue":"9","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"dc38cc47-d78a-4cba-b18a-a4a344aa1cf9","keyword":"TiC复合材料","originalKeyword":"TiC复合材料"},{"id":"8e16e50c-b2ea-41e1-93ee-552c10425be6","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"fbcfff02-d0e1-4ecb-99bf-84481a6e5ba3","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"c57c0bf6-b557-4c30-98d1-9f3cf7781dab","keyword":"高温强度","originalKeyword":"高温强度"}],"language":"zh","publisherId":"clgc200109001","title":"碳纤维增强TiC复合材料的制备与高温强度","volume":"","year":"2001"},{"abstractinfo":"研究了烧结温度、烧结保温时间和烧结压力等工艺参数对含30%TiC(体积分数,下同)颗粒的钨基复合材料的力学性能的影响,得到了制备30%TiCp/W复合材料的优化的热压烧结工艺为:2 000℃,20 Mpa压力下烧结60 min.用优化工艺制备的30%TiCp/W复合材料的高温强度比其室温强度要高,这种极好高温强度主要是由于W基体随温度上升发生了由脆性到塑性的转变,使TiC颗粒的增强效果在高温得以充分发挥.","authors":[{"authorName":"","id":"29a467c7-ea11-4dff-aebc-c77843ab065a","originalAuthorName":"宋桂明"},{"authorName":"周玉","id":"a7872a9c-1e8c-4462-aa75-30f9fd65e88c","originalAuthorName":"周玉"},{"authorName":"王玉金","id":"1ce91911-cd4b-4e8b-a61e-b2ed6fd4aff7","originalAuthorName":"王玉金"},{"authorName":"雷廷权","id":"e62544ed-b432-4df4-a789-a06a5c934055","originalAuthorName":"雷廷权"}],"doi":"","fpage":"171","id":"ae97de13-d2d3-42a1-8e4d-66bc9a15152d","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5483ec0a-1698-48f6-98b4-abfed31f423d","keyword":"钨基复合材料","originalKeyword":"钨基复合材料"},{"id":"a753ef5e-e0a3-415f-91c6-47501e1d65e2","keyword":"TiC颗粒","originalKeyword":"TiC颗粒"},{"id":"7be9b834-db07-4fba-86be-b959c7627656","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"1d2b4abf-4e64-4012-90fc-54e3fd912c7a","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"xyjsclygc199903011","title":"TiCp/W复合材料的制备工艺与力学性能","volume":"28","year":"1999"}],"totalpage":72,"totalrecord":716}