{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用粘结相成分设计方法制备了一种新型锐化合金材料,对所获得的材料进行了微观分析和性能测试.结果表明:与相同含量的常规合金相比,所制备的新型合金材料的动态抗压缩强度很高;在动态压缩加载条件下,材料的破坏形式为沿着试样加载方向(轴向)发生劈裂脱落,基本不出现塑性变形行为,这种特殊的失效模式有利于弹体在侵彻过程中产生\"锐化\"现象.","authors":[{"authorName":"程兴旺","id":"d8f862a7-4eb2-4900-92c0-2b0220171359","originalAuthorName":"程兴旺"},{"authorName":"王富耻","id":"5825e22c-0589-4213-b44a-bbb98e3863c5","originalAuthorName":"王富耻"},{"authorName":"李树奎","id":"5655c4f2-ef06-40a5-b936-5f251c2e4617","originalAuthorName":"李树奎"},{"authorName":"袁慎坡","id":"50f4a900-a12a-4e7d-af2d-5f64edb014fc","originalAuthorName":"袁慎坡"}],"doi":"","fpage":"1761","id":"7ca3829c-6d2e-49cf-ad84-e74fcb92a511","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"67b99193-a62c-4ecd-84c4-fb98a200c630","keyword":"锐化合金","originalKeyword":"自锐化钨合金"},{"id":"76e16c1e-6a71-4811-8f52-59e6720422b7","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"0894dc35-9082-4b87-a8fb-fbd71cca878d","keyword":"轴向劈裂","originalKeyword":"轴向劈裂"}],"language":"zh","publisherId":"xyjsclygc200611019","title":"新型锐化合金材料研究","volume":"35","year":"2006"},{"abstractinfo":"采用真空耗熔炼工艺对粉末冶金态合金进行熔炼,得到高密度、高强韧的熔炼态合金.通过金相显微镜、SEM、EDS等对粉末冶金态和熔炼态合金的显微组织、力学性能和断口形貌进行分析与表征.结果表明:耗熔炼可以消除烧结态存在的气孔,得到组织均匀的熔炼态合金;熔炼态合金显微组织主要由Zr-Ti相和W-Ti相组成,其中组元在熔炼中没有熔化,主要发生随机团聚现象;熔炼态合金断口形貌表现出韧性和脆性两种断裂方式共存特征,且密度与强度较粉末冶金态有明显提高.","authors":[{"authorName":"刘凯","id":"abffa1a2-0b28-431c-bc81-492da4b26e62","originalAuthorName":"刘凯"},{"authorName":"梁栋","id":"22a97a3f-329a-4c10-95d1-c5d1ff44bd44","originalAuthorName":"梁栋"},{"authorName":"朱曦光","id":"541db20b-0153-4aaf-a002-c38562154c02","originalAuthorName":"朱曦光"},{"authorName":"刘桂涛","id":"67dad645-4efb-4e24-8fa2-b6ba8833acc1","originalAuthorName":"刘桂涛"},{"authorName":"陈敏","id":"bc5a39a3-f67c-4542-b093-da2391cf75f6","originalAuthorName":"陈敏"},{"authorName":"王志威","id":"0cae566c-5000-409b-967b-7013db94b639","originalAuthorName":"王志威"},{"authorName":"葛文艳","id":"d42c285d-5c7a-4676-841e-76be9ea00f16","originalAuthorName":"葛文艳"},{"authorName":"李德林","id":"4bac6e8d-525f-4a77-9b3e-f67776cad5ac","originalAuthorName":"李德林"}],"doi":"","fpage":"79","id":"b8b9ba9f-41bb-4bc1-81e4-ccac3ee3f8d9","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"fbb43f46-dfb7-4be9-b7e1-4f8b1aeb698a","keyword":"合金","originalKeyword":"钨锆合金"},{"id":"5704003d-0a08-4948-a7c7-5aed0729723f","keyword":"真空耗熔炼","originalKeyword":"真空自耗熔炼"},{"id":"a20eeb48-b8cb-410e-935f-d3fd4c43eb83","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"a510bc4e-5583-4f08-8499-793c65f5202b","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"e3121862-2db8-4ab0-88c2-c1683dcb7393","keyword":"断口形貌","originalKeyword":"断口形貌"}],"language":"zh","publisherId":"bqclkxygc201601019","title":"真空耗熔炼对合金显微组织与力学性能的影响","volume":"39","year":"2016"},{"abstractinfo":"在精矿粉质量分数为1%前提下,通过改变Al原子分数,分别为50%、60%、70%、80%,对其粉末进行压制,进而将压坯激光点火,使其发生蔓延合成反应生成Fe-Al合金,利用XRD、SEM、EDX、硬度测试、磨损测试等表征手段,分析研究了掺杂定量的精矿粉后,不同Fe、Al配比对烧结Fe-Al合金微观组织结构及宏观性能的影响.结果表明:在烧结过程中,压坯实现了蔓延烧结.产物物相主要为AlFe、AlFe3、WO3、AlCrFe2等,且随着Al含量的增加,形成了富Al相.烧结Fe-Al合金组织随着Al含量的增加,伴随微小裂纹产生.当Al含量达到60%时,烧结Fe-Al合金显微硬度最大,达到HK1053;磨损率最低,为0.04 mg·mm-2.","authors":[{"authorName":"李刚","id":"8157b336-3250-4c63-a064-6fde2706fc6e","originalAuthorName":"李刚"},{"authorName":"于君娜","id":"9a045e68-c6ec-4066-bb7e-ef802ad331c5","originalAuthorName":"于君娜"}],"doi":"","fpage":"132","id":"2a195199-c4cd-45a8-aa0e-7724c5557693","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"ac098807-73e7-4e78-b73b-f31c9bb88867","keyword":"激光烧结","originalKeyword":"激光烧结"},{"id":"fc5f7565-2c1e-451b-a737-7d6ea30a31f2","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"8feda02d-b05c-4bb9-a882-0c4edfa82d86","keyword":"精矿粉","originalKeyword":"钨精矿粉"},{"id":"08a9a60c-6d09-43f0-8ac0-4e8c0cead5de","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"04f12696-82bc-4940-8a92-6ac35ebcf478","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"fhclxb201302021","title":"精矿粉掺杂Fe-Al合金激光引燃蔓延合金组织及性能","volume":"30","year":"2013"},{"abstractinfo":"为获得高性能Fe/Al合金复合材料,用激光引燃蔓延高温合成技术掺杂0~5.0%精矿粉末制备了Fe/Al合金,采用XRD、SEM、孔隙率、硬度、耐磨性等表征和测试手段,分析了精矿粉含量对烧结合金微观组织结构及性能的影响.结果显示:随精矿粉含量增加,Fe/Al合金试样中生成的Fe7W6明显增多,氧化物硬化相WO3含量降低,Fe/Al合金试样的烧结密度先增大后减小,孔隙率先降低后升高,致密性先显著提高后下降.当精矿含量为1.0%时,生成了W03、Fe7W6等物相,烧结合金内呈现出大量针状组织,烧结合金的烧结密度最大,为4.276 5g/cm3,孔隙率最小,为12.2%,烧结合金显微硬度最高,为956 HK,合金耐磨性最好,磨损率为0.05 mg/mm2.","authors":[{"authorName":"杨森","id":"5d97b40c-3484-40c8-808d-114dfb01420f","originalAuthorName":"杨森"},{"authorName":"杨绍斌","id":"99eda64e-c193-4219-ad4c-48345f708982","originalAuthorName":"杨绍斌"},{"authorName":"董伟","id":"e6e65083-2bd9-46ac-9cbf-8e1ef5a83322","originalAuthorName":"董伟"}],"doi":"","fpage":"1","id":"a952eb01-4307-441c-8e5d-782671ef5b41","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"7a2c1fb6-c3ec-4a8c-9a3b-49031227fce5","keyword":"Fe/Al烧结合金","originalKeyword":"Fe/Al烧结合金"},{"id":"b50f7fe3-e9fc-4278-b10b-92260e8d3fea","keyword":"精矿粉","originalKeyword":"钨精矿粉"},{"id":"46d4fd49-b95c-426f-9869-fd4d6248a984","keyword":"激光蔓延烧结","originalKeyword":"激光自蔓延烧结"},{"id":"9ce515bf-18b3-4bc0-b224-3c3fa91bf5e3","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"9a872d7a-365f-4e89-80c5-5848c2739c01","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"clbh201603001","title":"精矿粉含量对激光蔓延烧结Fe/Al合金组织及性能的影响","volume":"49","year":"2016"},{"abstractinfo":"为了提高传统93WNiFe合金在侵彻装甲时的锐化能力,采用粉末冶金的方法,在传统93WNiFe合金中加入了少量的Y2O3,经过1200 ℃氢气氛中预烧和1480 ℃烧结以及1100 ℃的真空退火热处理后烧结成为93W-Y2O3合金,其密度达到了理论密度的98.74%.静态力学性能测试结果表明:室温下抗拉强度为891 MPa,延伸率为20%,保证了其作为穿甲弹战斗部用合金材料的基本力学性能;动态力学性能测试结果表明:在应变为0.28,应变率为3500 s-1时,93W-Y2O3合金内部出现了明显的裂纹及大量的微裂纹,而裂纹源正是起始于粘结相中的Y2O3陶瓷相.因此,在93W合金粘结相中形成的弥散Y2O3陶瓷相,可以作为合金中微裂纹的萌生源来诱发合金的剪切失效,进而可以提高对绝热剪切不敏感的93WNiFe合金材料的锐化能力.","authors":[{"authorName":"吴复尧","id":"2abb1ded-1f79-45c3-886c-a28305774eb7","originalAuthorName":"吴复尧"},{"authorName":"程兴旺","id":"83968d21-21d6-4935-87d6-8a4de807f274","originalAuthorName":"程兴旺"},{"authorName":"才鸿年","id":"45017fc6-7eb6-4e9d-934e-76b66b350fe4","originalAuthorName":"才鸿年"}],"doi":"","fpage":"379","id":"cdfaeab1-3bb8-4f75-981d-db7c672096b4","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1230ccd6-db7d-426e-89ad-8753299cc0ab","keyword":"Y2O3陶瓷相","originalKeyword":"Y2O3陶瓷相"},{"id":"175d8f92-4b91-486f-8b8a-288d39102718","keyword":"绝热剪切","originalKeyword":"绝热剪切"},{"id":"17fadec3-f55e-4c12-926e-2e1d6632aca1","keyword":"合金","originalKeyword":"钨合金"},{"id":"fdd45f09-0f80-4e31-9143-4e125ed40feb","keyword":"锐","originalKeyword":"自锐"},{"id":"cdff12d9-80cc-4312-827f-6deed8c98890","keyword":"Hopkinson","originalKeyword":"Hopkinson"}],"language":"zh","publisherId":"xyjsclygc2007z1111","title":"Y2O3对93WNiFe合金锐性的影响","volume":"36","year":"2007"},{"abstractinfo":"对95W合金进行热挤压形变强化,分别沿挤压棒材轴向和径向进行静态、动态力学性能对比研究,并对测试后的试样进行显微组织和断口分析.结果表明,动态加载下纤维组织力学性能各向异性显著,沿纤维轴向具有较高的塑性,低的屈服强度;沿径向具有较低的塑性和高的屈服强度.分析表明,剪切破坏是导致动态加载下径向与轴向性能显著差异的主要原因,据此提出了将热挤压与扭转变形相结合,提高合金穿甲锐化能力的新途径.","authors":[{"authorName":"刘金旭","id":"8df40fbc-0ab9-4d72-a8f7-b494b381ca83","originalAuthorName":"刘金旭"},{"authorName":"李树奎","id":"adde48ec-2edf-4168-88ad-8a5080cdf75d","originalAuthorName":"李树奎"},{"authorName":"倪芳","id":"f33f43db-04da-4f95-aca2-284d66196e3e","originalAuthorName":"倪芳"}],"doi":"","fpage":"2041","id":"7bb21ec0-93d8-4bea-be24-47edf862ca24","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"f3a68aa9-8bed-4650-9c9a-67399013e2cc","keyword":"合金","originalKeyword":"钨合金"},{"id":"f209bc44-6af1-44a7-a893-7c3c2dd4311c","keyword":"热挤压","originalKeyword":"热挤压"},{"id":"b634650d-272c-4b4e-84f5-d5e54628d35e","keyword":"动态压缩","originalKeyword":"动态压缩"},{"id":"51dce458-47ea-410a-82a8-634b52f6241f","keyword":"纤维组织","originalKeyword":"纤维组织"},{"id":"bb0e0269-3990-49da-a0b0-b371c7014be7","keyword":"锐化","originalKeyword":"自锐化"}],"language":"zh","publisherId":"xyjsclygc200711038","title":"热挤压合金的组织性能研究","volume":"36","year":"2007"},{"abstractinfo":"采用不同激光输出功率对掺杂一定含量精矿粉末Fe40-A60粉末压坯进行激光点燃蔓延烧结,利用XRD,SEM,硬度、磨损和耐蚀性测试等表征手段,分析研究引燃功率对烧结合金微观组织结构及宏观性能的影响.结果表明:合金组织为条状组织,且随着引燃功率的增加,组织愈加均匀;产物物相主要为AlCrFe2,AlFe,FeAl3,Al86Fe14,Al5Fe2及硬质颗粒相WO3.当引燃功率为1 100W,合金的烧结密度最大为4.47 g/cm3,孔隙率最低为4.41%;烧结合金的耐蚀性能最佳,合金的致钝电流密度最小为79.8 mA/cm2,维钝电流密度也最小为0.37 mA/cm2;烧结合金硬度达到最大值,a层为1 309.7HK,b层为1 003HK.当引燃功率为1000W,烧结合金的a,b两层相对磨损量最低为0.06,0.05 mg/mm2.","authors":[{"authorName":"李刚","id":"b124fe06-3386-4fbf-86c7-b853a4df2707","originalAuthorName":"李刚"},{"authorName":"于君娜","id":"632b51e5-f42a-45c9-80cd-3dd6613a7594","originalAuthorName":"于君娜"},{"authorName":"罗崇辉","id":"83ab22fb-1e74-4e1b-ab7d-ad2da6a74b55","originalAuthorName":"罗崇辉"}],"doi":"","fpage":"57","id":"35ba68fe-ce6f-4b1f-9f65-502d8f9b9dd5","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"83817806-c431-4d2c-95a8-31659270ed16","keyword":"激光","originalKeyword":"激光"},{"id":"66ff243e-a5b5-4252-8ab3-5b2bfa98124a","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"05123dcc-02c9-4248-9605-96c790b5ba17","keyword":"精矿粉","originalKeyword":"钨精矿粉"},{"id":"4f9d9c4d-5092-449d-9b04-33eef1b798bb","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"769a2342-47fa-447d-94be-43daa503754f","keyword":"力学特性","originalKeyword":"力学特性"}],"language":"zh","publisherId":"bqclkxygc201301017","title":"Fe40-Al60掺杂精矿粉激光蔓延烧结合金组织及性能研究","volume":"36","year":"2013"},{"abstractinfo":"通过对掺杂精矿粉末的Fe40Al60粉末压坯进行激光点燃蔓延烧结,制备原位自生颗粒增强复合材料.利用表征手段分析精矿粉末添加量对烧结合金显微组织结构及宏观性能的影响规律.结果表明,随精矿粉含量的增加,合金显微组织由片状变为颗粒状,烧结合金物相主要为A12O3、FeAl、Fe3Al、Fe7W6、W及硬质颗粒相WO3.当精矿粉末含量为1%时,烧结合金密度最大,为4.27 g/cm3;孔隙率最小,为12.2%;硬度最高,上表层区达到1050 HV,中部区达到1818 HV,底层区达到1232 HV;合金磨损率最低,表层区为0.99 mg/mm2,中部区为0.59 mg/mm2,底层区为0.75 mg/mm2;合金耐蚀性能最好,腐蚀电流密度为116 μA/cm2.","authors":[{"authorName":"李刚","id":"ccad0128-ad5e-4395-836b-7cd6ab6f63e2","originalAuthorName":"李刚"},{"authorName":"许新颖","id":"6978e904-02ef-4bf1-9195-14acf6d79162","originalAuthorName":"许新颖"},{"authorName":"葛少成","id":"f769c6fa-59d5-4b35-befd-b20b6e789da8","originalAuthorName":"葛少成"},{"authorName":"高鹏","id":"30e49356-4ccf-4cf7-9560-31a8d5c93eb6","originalAuthorName":"高鹏"},{"authorName":"王智明","id":"da6dfa5a-6450-4d06-bf67-fb259c9f8161","originalAuthorName":"王智明"}],"doi":"","fpage":"11","id":"b031f70d-5915-429f-9589-b5072930d310","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"6f890fda-e521-4df6-a6a5-fed1bc18f4b7","keyword":"Fe-Al金属间化合物","originalKeyword":"Fe-Al金属间化合物"},{"id":"ea899282-42a8-4acc-9b0b-1e609226fb3c","keyword":"激光烧结","originalKeyword":"激光烧结"},{"id":"737a0b4b-8180-4472-93f9-26d5fbdb35aa","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"fee86927-44f4-4af4-b5eb-d1f3f6b95da2","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"jsrclxb201411003","title":"不同精矿粉末含量对Fe-Al系激光蔓延烧结合金组织性能的影响","volume":"35","year":"2014"},{"abstractinfo":"使用某小口径弹道炮,发射次口径脱壳尾翼稳定合金穿甲弹,分别侵彻45钢及30CrMnMo钢靶板,发现残余弹体微观结构有明显不同.说明合金残余弹体的破坏特征与靶板性能有关.运用固体与分子经验电子理论(EET)对两种靶板的价电子结构进行了分析.发现对于45钢靶板,由于C-Fe原子结合较弱,受冲击后对弹体产生的反作用力小,使残余弹体不产生剪切变形,头部的破坏特征为晶粒破碎及沿垂直侵彻方向的变形,宏观上表现为典型的\"蘑菇头\"状;对于30CrMnMo钢靶板,由于C-Mo原子间的强烈结合,受冲击后对残余弹体产生很强的反作用力,使合金残余弹体头部产生剪切破坏,具有一定程度的\"锐化效应\".","authors":[{"authorName":"李金泉","id":"b6c85931-7244-4513-9aae-b5493abfc86d","originalAuthorName":"李金泉"},{"authorName":"黄德武","id":"86ac5bcb-b02f-459e-bc99-5e8cefca4715","originalAuthorName":"黄德武"},{"authorName":"王敏杰","id":"c84b8d58-ffd9-4f60-9eb6-b97e8790549e","originalAuthorName":"王敏杰"}],"doi":"10.3969/j.issn.1001-4381.2010.07.013","fpage":"59","id":"d736ff55-a5c9-4da6-99e3-a89edb6c12e7","issue":"7","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"b1bef914-85c2-4550-84d2-a8c87d68d3d1","keyword":"绝热剪切","originalKeyword":"绝热剪切"},{"id":"ba6e0695-c75b-4072-80a7-86ce4a71c664","keyword":"残余弹体","originalKeyword":"残余弹体"},{"id":"52ece8d0-0c2a-49ea-ae07-548c82331f23","keyword":"原子键","originalKeyword":"原子键"},{"id":"88ded61e-6fa9-476e-b392-462058eedf47","keyword":"价电子结构","originalKeyword":"价电子结构"}],"language":"zh","publisherId":"clgc201007013","title":"不同装甲靶板价电子结构对合金穿甲弹变形特征的影响","volume":"","year":"2010"},{"abstractinfo":"研究了含高温合金棒材中夹杂的形貌、来源及形成原因.研究结果表明,含高温合金棒材中夹杂的来源是用于合金电极棒焊接的电极.氩弧焊电极的消耗是夹杂形成的原因;结构不合理的等离子弧焊枪导致等离子焊机设备没有形成真正意义的等离子弧,加热能力下降,如果使用的焊接电流越大,熔化的可能性越大,合金出现夹杂的几率也越大.","authors":[{"authorName":"于腾","id":"9846e216-62dc-429b-8718-38d502993398","originalAuthorName":"于腾"},{"authorName":"刘宁","id":"4e4518c3-f99f-4cba-9b21-c2b04a9e599f","originalAuthorName":"刘宁"},{"authorName":"李凤艳","id":"0be050e5-a6c9-488c-916d-817cea004a46","originalAuthorName":"李凤艳"},{"authorName":"王志刚","id":"efad1a43-9172-4c62-a77b-f1e3c05cba20","originalAuthorName":"王志刚"}],"doi":"","fpage":"48","id":"2d156a77-604b-473d-95d5-279838db40d3","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"135ef71c-d526-448f-8f60-71c9bb5d4aa1","keyword":"高温合金","originalKeyword":"高温合金"},{"id":"ada13441-af76-4057-a54b-1f811feba7ab","keyword":"氩弧焊","originalKeyword":"氩弧焊"},{"id":"299ae278-70ea-4f2e-a3e6-782d6a6c1825","keyword":"等离子弧焊","originalKeyword":"等离子弧焊"},{"id":"035d6189-dcdd-4f08-830d-52f11296a3ae","keyword":"夹杂","originalKeyword":"钨夹杂"}],"language":"zh","publisherId":"jsgncl201406008","title":"含高温合金夹杂成因的研究","volume":"21","year":"2014"}],"totalpage":4301,"totalrecord":43002}