{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"阵列电极是由一系列规则排列的微电极阵列组成的复合电极,可以实现传统电化学测量中对大面积电极的统计平均信号的获取,而且可以给出电极微区的电位和电流大小和分布信息,从而准确表征电极表面的电化学不均匀性.本文就阵列电极技术在腐蚀领域的应用进展,及其优势与不足进行了总结,并对该技术的发展前景进行了展望.","authors":[{"authorName":"范林","id":"22cdf066-9d3d-47b7-9f86-3afd2d8d13fe","originalAuthorName":"范林"},{"authorName":"邢青","id":"979d4afd-8a91-4407-9f17-9c8cfb0887f1","originalAuthorName":"邢青"},{"authorName":"邱日","id":"82b51ba6-da70-4d04-b7e5-b0c5c425c3e8","originalAuthorName":"邱日"},{"authorName":"张慧霞","id":"62cb9add-6e02-4ef7-8500-30a9652eec40","originalAuthorName":"张慧霞"},{"authorName":"郭为民","id":"b6b3d3eb-40f3-47b9-9f03-b15ab69e0f1b","originalAuthorName":"郭为民"},{"authorName":"侯健","id":"34f69f3a-0a75-462f-b18d-712025e25144","originalAuthorName":"侯健"}],"doi":"10.11903/1002.6495.2014.364","fpage":"509","id":"2fe5cd52-b5a3-4ed6-95f5-7e700bceb5cf","issue":"5","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"d0f4a71a-349a-4766-9868-fb728ec1828f","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"208ff8c8-0947-4a2a-84d2-fa7551d5e993","keyword":"阵列电极","originalKeyword":"阵列电极"},{"id":"571631c2-1286-4cf1-b0f7-1ef6b937e9b8","keyword":"局部腐蚀","originalKeyword":"局部腐蚀"},{"id":"ea24f0cd-1786-4063-ab9b-ccf65165331b","keyword":"微区电化学","originalKeyword":"微区电化学"}],"language":"zh","publisherId":"fskxyfhjs201505017","title":"阵列电极技术在腐蚀领域的应用进展","volume":"27","year":"2015"},{"abstractinfo":"在溶胶溶液中通过PAA模板沉积不同时间制备出LiCoO2晶须有序阵列.电子显微镜结果显示,沉积较长时间,所得晶须长度较长,分布更均匀,并且结晶程度更好.XRD分析表明得到了层状的LiCoO2结构.电化学测试表明LiCoO2晶须有序阵列电极具有很好的电化学可逆性和较高的容量.","authors":[{"authorName":"周盈科","id":"a22e2140-ef39-4b45-aeee-39ea1792353b","originalAuthorName":"周盈科"},{"authorName":"贺本林","id":"e73c173d-3b4a-4de8-9e11-e47d98f0dec8","originalAuthorName":"贺本林"},{"authorName":"申承民","id":"941ff3d1-0534-420d-b59d-0ba3a02f2dd0","originalAuthorName":"申承民"},{"authorName":"力虎林","id":"8f71658f-99ec-4c0d-b2b1-6a2258824426","originalAuthorName":"力虎林"}],"doi":"10.3321/j.issn:1000-324X.2004.04.015","fpage":"795","id":"c3f341f8-050e-41ac-9ec1-b8f9a1c21035","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"03bc5135-0312-45bf-9489-19e78ae17d9d","keyword":"LiCoO2晶须","originalKeyword":"LiCoO2晶须"},{"id":"dcacd86d-0141-4ec1-a4ed-ef5a5aa6a358","keyword":"阵列电极","originalKeyword":"阵列电极"},{"id":"a6643a32-de1a-41dd-9eb9-9a0d1482aa30","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"c9139c40-add6-47d2-81ab-957a4cc03421","keyword":"PAA模板","originalKeyword":"PAA模板"}],"language":"zh","publisherId":"wjclxb200404015","title":"沉积时间对LiCoO2晶须有序阵列电极的影响及其电化学性质","volume":"19","year":"2004"},{"abstractinfo":"应用阵列电极技术研究了Q235碳钢在3.5%NaCl溶液中的电流分布,并根据电流分布变化过程探究了腐蚀机理.结果表明,浸泡起始阶段,自水线向下,阳极电流呈逐渐增大趋势,表现出宏观氧浓差电池的特征,但此时阴极与阳极电流交叉分布.水线腐蚀发展阶段,形成了以水线附近为阴极,水线下为阳极的氧浓差电池.水线上阴极反应速率的不断增加,推动水线下金属腐蚀由水线下逐渐向水线处扩展,加速了整个金属的腐蚀反应速率.水线腐蚀稳定阶段,水线上成为电极表面主要的阴极反应区域,腐蚀速率处于稳定状态.阵列电极测量技术可以提供整个水线区的电流分布及其变化信息,弥补了传统片状电极的不足,为水线腐蚀研究提供了有效的技术手段.","authors":[{"authorName":"陈亚林","id":"d9ce3e59-36b5-4b13-837b-ad938150d1ac","originalAuthorName":"陈亚林"},{"authorName":"张伟","id":"98829978-fc00-4fae-ae04-74ce069c01a5","originalAuthorName":"张伟"},{"authorName":"王伟","id":"ca1c4495-900c-4ed2-a8da-f33e03db71b0","originalAuthorName":"王伟"},{"authorName":"王佳","id":"974d1bef-30e9-4289-95e1-2a62f0f845bd","originalAuthorName":"王佳"},{"authorName":"王琦","id":"9207c423-a4b3-4fc8-93f7-1ccf138eaad4","originalAuthorName":"王琦"},{"authorName":"蔡光旭","id":"92282fc1-1472-4466-96d5-6aced6e5a3bb","originalAuthorName":"蔡光旭"}],"doi":"10.11902/1005.4537.2013.247","fpage":"451","id":"90d8f6f6-1eb1-48f0-84ac-387b7687b6db","issue":"5","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"c05428a0-fff0-4e49-9125-e8a6268dadee","keyword":"水线腐蚀","originalKeyword":"水线腐蚀"},{"id":"d03e0347-83af-4b61-9c8f-1b586c111d9b","keyword":"阵列电极","originalKeyword":"阵列电极"},{"id":"13ca2317-f617-48ff-b3d4-4b94a9c7ada0","keyword":"金属腐蚀","originalKeyword":"金属腐蚀"},{"id":"40fb3c48-a017-4a64-8cb8-b83275e9ca5b","keyword":"电流分布","originalKeyword":"电流分布"}],"language":"zh","publisherId":"zgfsyfhxb201405009","title":"WBE技术研究水线区Q235碳钢腐蚀","volume":"34","year":"2014"},{"abstractinfo":"采用动电位极化(PDS)、电化学阻抗谱(EIS)、电容测量以及阵列电极等技术研究了Cu的短期贮存对其腐蚀电化学行为的影响.结果表明,金属Cu表面膜呈现p型半导体结构,经过短期贮存后载流子浓度减小,腐蚀电位正移,腐蚀电流密度下降,表面膜对腐蚀阴极过程、阳极过程均有抑制作用.Cu在NaCl液滴下呈现典型的局部腐蚀特征;经过贮存后,电极表面润湿性减弱,腐蚀活性降低,总体平均腐蚀强度减弱,但是局部腐蚀强度反而增强.","authors":[{"authorName":"冯林","id":"85e7d819-6a73-40c4-b84e-85cd436bbe19","originalAuthorName":"冯林"},{"authorName":"王燕华","id":"9e6d1b88-7da0-4c19-b887-d20c4afe0f99","originalAuthorName":"王燕华"},{"authorName":"钟莲","id":"425781ea-0887-4e44-b826-9897e6931253","originalAuthorName":"钟莲"},{"authorName":"王佳","id":"7e3c1427-9c3b-426d-8af3-76866c0fba6f","originalAuthorName":"王佳"},{"authorName":"李爱娇","id":"07513e2c-4015-4489-bf07-cd17da41d690","originalAuthorName":"李爱娇"},{"authorName":"金晓晓","id":"47ab83ac-bae9-4c67-9d9c-7496acb2e3ad","originalAuthorName":"金晓晓"}],"doi":"10.11902/1005.4537.2015.162","fpage":"375","id":"411fe6bd-7e19-42d0-a3fa-9804e8ebb771","issue":"4","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"f3293f77-9474-4e51-82b2-a60154de4c48","keyword":"阵列电极","originalKeyword":"阵列电极"},{"id":"c8c288ad-d3a5-4633-9513-da967a5cfcc3","keyword":"短期贮存","originalKeyword":"短期贮存"},{"id":"d929d916-07b0-45ae-9e67-8d5ff8ab9431","keyword":"Cu","originalKeyword":"Cu"},{"id":"8557cb76-53bf-4233-b02c-cc94418edf3d","keyword":"Mott-Schottky曲线","originalKeyword":"Mott-Schottky曲线"},{"id":"06478bb1-a5a4-452f-bb9c-317311802a3e","keyword":"液滴","originalKeyword":"液滴"},{"id":"068eac3f-3ba5-4d17-bf4a-ab396556ef2d","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"zgfsyfhxb201604013","title":"短期贮存对金属铜腐蚀电化学行为的影响","volume":"36","year":"2016"},{"abstractinfo":"利用阵列电极技术捕获了在不同浸泡时间下每个微电极与其它99个微电极整体的电偶电流,分析获得了海水/海泥界面附近阴、阳极分布区域的变化规律;利用线性极化和电化学阻抗技术对垂直海水/海泥界面的一行微电极进行测试,获得了距海水/海泥界面不同距离的微电极的腐蚀电流、腐蚀电位,并观察了腐蚀形貌,探讨了其腐蚀机理.结果表明:平行于海水/海泥界面的海泥区域为电偶腐蚀阳极区、对应的海水区域为电偶腐蚀阴极区域;海水/海泥界面区金属的腐蚀是由电位差、溶解氧浓度、海泥阻抗等多因素控制;腐蚀主要区域是近海水/海泥界面的海泥区域及远海水/海泥界面的海水区域.海水中较高浓度的氧促进了腐蚀产物的致密化,而海泥中缺氧环境及微生物抑制了腐蚀产物的致密化.","authors":[{"authorName":"胡杰珍","id":"ce4c231d-0cc0-4f5d-9de5-26098cc2d663","originalAuthorName":"胡杰珍"},{"authorName":"李晓刚","id":"b1e374a8-f17a-4496-a738-d5646ab61508","originalAuthorName":"李晓刚"},{"authorName":"邓培昌","id":"cbd2ede4-3cfd-4616-8940-41f070266522","originalAuthorName":"邓培昌"},{"authorName":"张际标","id":"1b42094c-026a-45aa-9e54-1e3eaa2bf64a","originalAuthorName":"张际标"},{"authorName":"王贵","id":"267b964f-6f4a-4b11-bc46-7a9311c89188","originalAuthorName":"王贵"},{"authorName":"苏林海","id":"730e6321-db69-4a68-8e7f-839cfb17db1c","originalAuthorName":"苏林海"}],"doi":"10.11903/1002.6495.2015.195","fpage":"551","id":"68a33136-1f48-465a-bcb6-e4d5f1decfd7","issue":"6","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"886b31e3-d12f-487b-a6c1-c038b50861f0","keyword":"海水/海泥界面","originalKeyword":"海水/海泥界面"},{"id":"847d2218-a25b-4093-b9b7-ebeb4d15d74f","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"403d9361-917b-48a5-8c0f-af00d07c13fc","keyword":"阵列电极","originalKeyword":"阵列电极"},{"id":"1f2e8a8f-a460-498a-9c10-5d11579dc8f5","keyword":"电偶腐蚀","originalKeyword":"电偶腐蚀"}],"language":"zh","publisherId":"fskxyfhjs201506004","title":"WBE联合LP技术研究海水/海泥界面碳钢的腐蚀行为","volume":"27","year":"2015"},{"abstractinfo":"采用模拟印刷电路板缝隙腐蚀装置,发展阵列电极方法测试缝隙内电路板表面铜在NaCl溶液中的腐蚀电位,研究了多种因素对其缝隙腐蚀行为的影响.结果表明,缝隙宽度为20~30μm时,印刷电路板容易发生缝隙腐蚀;在浸泡初期,缝隙内铜的腐蚀电位随浸泡时间延长负移,但浸泡48 h后,变化趋势较小;溶液中NaCl浓度达到1 mol/L时,对促进电路板的缝隙腐蚀作用较为明显;酸性范围内,缝隙内电路板腐蚀电位随缝隙大小、浸泡时间、NaCl溶液浓度、溶液的pH值降低而负移;温度低于45℃后,缝隙内铜的腐蚀电位随温度的升高而降低.","authors":[{"authorName":"曲文娟","id":"50736a1b-cac4-4965-bfc8-881afaac0b02","originalAuthorName":"曲文娟"},{"authorName":"杜荣归","id":"d890906a-e8aa-46ba-b5df-e80b399c326d","originalAuthorName":"杜荣归"},{"authorName":"卓向东","id":"9cb33be3-b862-4e65-b60f-4196c14668fa","originalAuthorName":"卓向东"},{"authorName":"林昌健","id":"7cdfa52b-3508-4fdc-bf3f-18402f7f519d","originalAuthorName":"林昌健"}],"doi":"","fpage":"4","id":"8306186d-e30e-4e86-b0a6-a2d49cdd72cf","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"56b61ced-3c06-4844-a1b7-bffaebc8245b","keyword":"印刷电路板","originalKeyword":"印刷电路板"},{"id":"52035433-aad6-4aed-9490-eba3dca7540b","keyword":"铜","originalKeyword":"铜"},{"id":"c3608204-e01f-4502-a687-c68591eb0d9e","keyword":"缝隙腐蚀","originalKeyword":"缝隙腐蚀"},{"id":"b2b34dd3-9693-4e44-86b0-f1b2b6b91c66","keyword":"阵列电极","originalKeyword":"阵列电极"}],"language":"zh","publisherId":"clbh200802002","title":"印刷电路板缝隙腐蚀行为研究","volume":"41","year":"2008"},{"abstractinfo":"本文提出了一种简易、低成本的钨丝微电极阵列制作工艺和方法.该方法采用MEMS工艺制作的玻璃模具实现钨丝阵列的精密有序排列,同时,在钨丝电极表面涂覆一层光敏性的聚酰亚胺作为绝缘层,结合\"双面光刻\"技术和电化学腐蚀技术实现电极位点大小和电极丝几何尺寸的精确控制.最后,通过注模、光刻制作SU-8固定座体完成钨丝微电极阵列的组装固定.整个制作工艺简单快速,且玻璃模具可重复使用,大大降低了制作成本.此外,本文还测试和评价了所制作微电极的表面形貌、电学性能以及生物相容性.","authors":[{"authorName":"姚源","id":"6ff0be43-158d-421f-8d31-23dc0f9f8edc","originalAuthorName":"姚源"},{"authorName":"李刚","id":"a3f5d1fc-7403-498b-b842-b50719b1a655","originalAuthorName":"李刚"},{"authorName":"张华","id":"32f60534-f4a2-45c6-bb33-7417815c2ceb","originalAuthorName":"张华"},{"authorName":"周洪波","id":"3d30a4bd-d59a-48b2-94a4-2716f574e928","originalAuthorName":"周洪波"},{"authorName":"孙晓娜","id":"e50b7190-9547-415e-bf8f-850fcc2ac463","originalAuthorName":"孙晓娜"},{"authorName":"朱壮晖","id":"6b0de3f1-45eb-4cd7-9da6-1f9fcf5cd99f","originalAuthorName":"朱壮晖"},{"authorName":"隋晓红","id":"df5981b4-aede-48d4-9c59-b2b2dc1542dc","originalAuthorName":"隋晓红"},{"authorName":"赵建龙","id":"47956295-0a80-4cca-b56f-eb3b195296aa","originalAuthorName":"赵建龙"}],"doi":"10.3969/j.issn.1007-4252.2009.01.004","fpage":"20","id":"560f4d30-ed25-4bb3-b0fd-44ef5f10de35","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"af80953f-63f3-44d7-8839-99187f9f92ab","keyword":"微细加工","originalKeyword":"微细加工"},{"id":"e1e1a70d-197a-41f6-99a7-3c4641f19241","keyword":"钨丝","originalKeyword":"钨丝"},{"id":"ab2f2757-bfa1-487d-a047-b4a8e8cc1df0","keyword":"微电极阵列","originalKeyword":"微电极阵列"},{"id":"8fccc752-4416-4bcb-bcca-c612086d7485","keyword":"神经探针","originalKeyword":"神经探针"},{"id":"dcfe0666-993d-4a1e-bf74-5326c03b112f","keyword":"双面光刻","originalKeyword":"双面光刻"}],"language":"zh","publisherId":"gnclyqjxb200901004","title":"钨丝微电极阵列的简易制备方法","volume":"15","year":"2009"},{"abstractinfo":"采用氧化铝为模板的电化学沉积方法制备锡纳米阵列电极,用扫描电镜和X射线衍射仪表征电极微观形貌结构,并采用循环伏安和交流阻抗研究电极嵌锂过程,同时研究纳米晶锡薄膜电极和轧制锡箔电极.结果表明:纳米阵列电极与锡薄膜、锡箔电极具有不同交流阻抗谱特征,锡纳米阵列电极在中频区出现双电层阻抗,与其电解液/电极接触面积较大有关;不同微观结构形态下锡电极的电化学反应表面阻抗相差大于一个数量级,锡纳米阵列的表面膜电阻为19.8~14.6 Ω·cm2;锡纳米阵列电极上的锂离子扩散速率最大,0.2V嵌锂电位下扩散系数为10-10 cm2·s-1;采用纳米阵列结构使电极具有很高电的化学活性.","authors":[{"authorName":"王宇","id":"27c887f7-6b01-44e6-af20-5247713462cc","originalAuthorName":"王宇"},{"authorName":"刘浪","id":"33c3ecef-9d5c-49b3-8611-40fe51365e95","originalAuthorName":"刘浪"},{"authorName":"吴大平","id":"fddb7d6e-185e-423d-b5eb-f27c82da1e72","originalAuthorName":"吴大平"},{"authorName":"郭玉忠","id":"f751fd63-d9d8-4f34-b26c-362859fac8cd","originalAuthorName":"郭玉忠"},{"authorName":"王剑华","id":"c7acb2c3-876a-48a4-9c25-6021988d3f12","originalAuthorName":"王剑华"}],"doi":"","fpage":"1628","id":"90b7a178-f52d-4dfc-b7a0-df5c8c911a30","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"ac67b14e-b149-452e-ae1c-e211facee68d","keyword":"锡","originalKeyword":"锡"},{"id":"7fa48ecf-c664-4c47-adba-e002e1efd272","keyword":"纳米阵列","originalKeyword":"纳米阵列"},{"id":"9fad8748-fc22-4fb2-99b3-a4e1e45fe8e7","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"7a428164-4aad-410e-94b9-2bc6322ca649","keyword":"循环伏安","originalKeyword":"循环伏安"},{"id":"4467797f-5b9d-42d3-b4c5-58f3b4570e20","keyword":"交流阻抗","originalKeyword":"交流阻抗"}],"language":"zh","publisherId":"xyjsclygc201209026","title":"纳米阵列和纳米晶薄膜锡电极性质的电化学研究","volume":"41","year":"2012"},{"abstractinfo":"为使TiO2纳米管阵列电极更好地应用于太阳能电池中,采取恒压阳极氧化法在质量分数0.5%NH4F/甘油电解液中在钛基体上制备出TiO2纳米管阵列.采用XRD、SEM、电子顺磁波普仪(EPR)、交流阻抗法(EIS)和循环伏安法(CV)研究TiO2纳米管阵列电极的电子传输性能及界面性质,确定各电极反应过程对应的阻抗曲线,计算得出电极的电子传输动力学参数.研究表明,TiO2纳米管阵列电极表面发生三价钛化合物转化成四价钛氧化物的氧化反应,电极电阻明显降低,加速了电极-电解液界面电子扩散速度,有利于TiO2电极表面自由羟基的产生.","authors":[{"authorName":"田西林","id":"573caa65-cab8-4261-9cb0-3353402ae671","originalAuthorName":"田西林"},{"authorName":"陶杰","id":"d4521f1e-97f7-4133-8747-9bfdf6a6b672","originalAuthorName":"陶杰"},{"authorName":"陶海军","id":"329007df-e5c4-4081-bd83-39f394368cf2","originalAuthorName":"陶海军"},{"authorName":"包祖国","id":"444556cf-b4e7-438b-8870-c3ff277a93d7","originalAuthorName":"包祖国"},{"authorName":"汤育欣","id":"33a65821-f907-455c-a559-8f6e06ccdf36","originalAuthorName":"汤育欣"},{"authorName":"李转利","id":"1640a384-c45f-410f-9f9c-a4a57d7ca125","originalAuthorName":"李转利"},{"authorName":"张焱焱","id":"e698a0fa-6acd-43db-b247-a67c503eeffd","originalAuthorName":"张焱焱"}],"doi":"","fpage":"1066","id":"960f59a9-b5c1-4d55-ae7d-350633c09f6e","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"30471722-9ed0-4d80-a6f6-37504153f77d","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"5154cd15-9f7d-4711-b5ce-ffe43ad9f490","keyword":"TiO2纳米阵列","originalKeyword":"TiO2纳米阵列"},{"id":"91d1c37e-a1bf-4477-a398-383ac976c780","keyword":"循环伏安","originalKeyword":"循环伏安"},{"id":"901cf215-2259-4d4a-9638-fda3a31e841c","keyword":"交流阻抗","originalKeyword":"交流阻抗"}],"language":"zh","publisherId":"xyjsclygc201006029","title":"阳极氧化制备TiO2纳米管阵列电极反应及阻抗研究","volume":"39","year":"2010"},{"abstractinfo":"利用化学刻蚀法由p型硅片制备了硅纳米线阵列,经过表面去氧化层处理后,制备了检测蛋白质细胞色素c的电化学传感器.实验表明,硅纳米线阵列电极对细胞色素c有良好的电化学响应,并且在低浓度条件下具备线性响应的特点.根据与未经表面处理的硅纳米线阵列电极的实验结果相对比,提出了细胞色素c所具备的羧基末端与硅纳米线阵列电极表面的Si-H相互作用从而改善传感性能的检测机理.","authors":[{"authorName":"杨坤","id":"5644ee48-7dce-418e-87a5-a21b255f9d70","originalAuthorName":"杨坤"},{"authorName":"陈欢","id":"7e259b04-851f-46a0-8b0a-2784b3dedcd3","originalAuthorName":"陈欢"},{"authorName":"赵文超","id":"e2fc11ba-a397-4ca2-9382-d897e619787d","originalAuthorName":"赵文超"},{"authorName":"王建涛","id":"9a76c21a-a828-4a42-bb91-9590596ae5bc","originalAuthorName":"王建涛"},{"authorName":"王辉","id":"e689ea1b-9960-4edb-801d-513258827888","originalAuthorName":"王辉"},{"authorName":"张晓宏","id":"cd375c03-5143-4058-be1c-da8f848527a6","originalAuthorName":"张晓宏"}],"doi":"","fpage":"87","id":"bcf79fd1-b41a-4e7b-875b-30236c498c16","issue":"2","journal":{"abbrevTitle":"YXKXYGHX","coverImgSrc":"journal/img/cover/YXKXYGHX.jpg","id":"74","issnPpub":"1674-0475","publisherId":"YXKXYGHX","title":"影像科学与光化学 "},"keywords":[{"id":"96277052-0680-4cae-9c1a-73f59788b1cb","keyword":"硅纳米线阵列","originalKeyword":"硅纳米线阵列"},{"id":"c3564414-2f47-483e-82c6-c88c67d67bc7","keyword":"电化学传感器","originalKeyword":"电化学传感器"},{"id":"e2de64e9-a8a8-483d-a46b-245cdb7ac417","keyword":"细胞色素c","originalKeyword":"细胞色素c"}],"language":"zh","publisherId":"ggkxyghx200902002","title":"硅纳米线阵列电极作为细胞色素c传感器的研究","volume":"27","year":"2009"}],"totalpage":665,"totalrecord":6643}