欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(765)
  • 图书()
  • 专利()
  • 新闻()

FRACTAL ANALYSIS OF FRACTURE SURFACE OF WELDED JOINT UNDER LOW CYCLE FATIGUE

NI Yushan CHENG Guangxu KUANG Zhenbang Xi'an Jiaotong University , China doctorate student , Institute of Engineering Mechanics , Xi'an Jiaotong University , Xi'an 710049 , China

金属学报(英文版)

Hausdorff dimension of fracture surface roughness of welded joint,both welding metal and heat-affected zone.of pressure vessel steel 16MnR,tested under strain-controlled low-cycle fatigue,was examined with computer vision srstem and by two-dimensional variation method. Results show that it decreases with the increase of cyclic hysteresis energy.The Hausdorff di- mension variation at heat-affected zone is greater than that of weld metal.It is believed that the greater the fractal dimension is,the longer the fatigue life will be.

关键词: welded joint , null , null , null

FRACTURE MECHANICS ANALYSIS OF THERMAL STRAIN FATIGUE LIFE FOR THE SINTERING MACHINE PALLET

LI Zhenzi and LI Ming (Department of Architectnre Engineering , Central South University of Technology , Changsha 410083 , China)LIAO Fuchang (Shenzhen School of Technology , Shenzhen 518029 , China)Manuscript received 10 August 1995 , in revised form 12 April 1996

金属学报(英文版)

In recent years elastic-plastic fracture mechanics has developed rapidly and is widely used to solve various engineering problems. The application of elastic-plastic fracture mechanics on the pallet of sintering machine is approached in detail for the first time in the present study. The theoretical results were compared with the actual data determined from sintering machine pallet. Results show that good agreement was achieved between the method suggested by the author and the actual data. The basis of determining design of the sintering machine pallet in iron and steel engineering has been provided and it will result in great economic benefits.

关键词: : pallet , null , null , null

Service Performance of Engineering Materials

Andrej Atrens

材料科学技术(英文)

Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.

关键词: Stress corrosion cracking , null , null

Biomimicry of bamboo bast fiber with engineering composite materials

Materials Science & Engineering C-Biomimetic Materials Sensors and Systems

Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.

关键词: bamboo;bast fiber;biomimetics;engineering composites

THERMAL FATIGUE AND FRACTURE MECHANICS ANALYSIS OF GREY CAST IRON

GUO Chengbi ZHOU Weisheng Dalian Institute of Technology , Dalian , Liaoning , China Professor , Dept.of Shipbuilding , Dalian Institute of Technology , Dalian , Liaoning , China

金属学报(英文版)

The in-phase and out-of-phase thermal fatigue,the C-P type and P-C type isothermal fa- tigue of grey cast iron were experimentally studied.The fatigue life was evaluated analytically by using the elastic-plastic fracture mechanics method(mainly J integral).The results of ex- periments and calculations showed that the lifes of in-phase and C-P type fatigue are longer than that of out-of-phase and P-C type fatigue respectively within the same strain range. This is in contrast to the results of other materials such as low carbon steel.On the other hand, the predicted lifes are consistent with experimental results.This suggests that J integral as a mechanics parameter for characterizing the thermal fatigue strength of grey cast iron and the mechanics model and the calculation method developed here are efficient.A parameter ΔW_1 was proposed from energy aspect to characterize the capacity of crack propagation. The isothermal fatigue life is the same as the thermal fatigue life for identical ΔW_1 values.

关键词: grey cast iron , null , null

Features and states of microscopic particles in nonlinear quantum-mechanics systems

Frontiers of Physics in China

In this paper, we present the elementary principles of nonlinear quantum mechanics (NLQM), which is based on some problems in quantum mechanics. We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles. Concretely speaking, we study in this paper the wave-particle duality of the solution of the nonlinear Schrodinger equation, the stability of microscopic particles described by NLQM, invariances and conservation laws of motion of particles, the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations, the classical rule of microscopic particle motion, the mechanism and rules of particle collision, the features of reflection and the transmission of particles at interfaces, and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles, and so on. We obtained the invariance and conservation laws of mass, energy and momentum and angular momentum for the microscopic particles, which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions. We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics (LQM). They have a lot of new properties; for example, the particles possess the real wave-corpuscle duality, obey the classical rule of motion and conservation laws of energy, momentum and mass, satisfy minimum uncertainty re-lation, can be localized due to the nonlinear interaction, and its position and momentum can also be determined, etc. From these studies, we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM. Therefore, the NLQM is a new physical theory, and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems, which can solve problems disputed for about a century by scientists in the LQM field. Hence, the NLQM built is very necessary and correct. The NLQM established can promote the development of physics and can enhance and raise the knowledge and recognition levels to the essences of microscopic matter. We can predict that nonlinear quantum mechanics has extensive applications in physics, chemistry, biology and polymers, etc.

关键词: microscopic particle;nonlinear systems;nonlinear quantum mechanics;basic principle;motion rule;dynamic property;nonlinear Schrodinger;equation

Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale

Science

Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.

关键词: strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior

Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties

Chemical Communications

Crystal facet engineering of semiconductors has become an important strategy for fine-tuning the physicochemical properties and thus optimizing the reactivity and selectivity of photocatalysts. In this review, we present the basic strategies for crystal facet engineering of photocatalysts and describe the recent advances in synthesizing faceted photocatalysts, in particular TiO(2) crystals. The unique properties of faceted photocatalysts are discussed in relation to anisotropic corrosion, interaction dependence of adsorbates, photocatalytic selectivity, photo-reduction and oxidation sites, and photocatalytic reaction order. Ideas for future research on crystal facet engineering for improving the performance of photocatalysts are also proposed.

关键词: shape-controlled synthesis;exposed 001 facets;rutile tio2 nanorods;visible-light photocatalysis;solvent-solute interactions;anatase;titanium(iv) oxide;low-temperature synthesis;ordered solid-phases;platinum nanocrystals;hydrogen-production

DYNAMIC ASPECTS OF LINEAR ELASTIC FRACTURE-MECHANICS APPLIED TO DIELECTRIC-BREAKDOWN

Journal of Physics D-Applied Physics

The dynamic aspects of linear elastic fracture mechanics applied to dielectric breakdown are studied. In the same direction as the fracture mechanics analogue for dielectric breakdown described previously by some researchers, this paper develops the intrinsic, rate-dependent bond breakdown micromechanism to account for the dynamic process of dielectric breakdown. The formulae of conducting microcrack growth rate and lifetime prediction are derived and applied to the experimental data of SiO2 films.

关键词: sio2-films;oxides

Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds

Biomedical Materials

In this work, porous magnesium (Mg) with a three-dimensional open-cellular structure, potentially employed as bone tissue engineering scaffolds, was fabricated by the mechanical perforation method. The influences of porosity, pore size and pore arrangement on compressive behavior and the anisotropy of new porous Mg were analyzed theoretically using orthogonal arrays and the finite element method (FEM). The results showed that the parameters of porosity, pore size and pore arrangement had different effects on the compressive properties. The compressive strength could be improved by optimizing these parameters. The anisotropy of porous Mg was also verified in this study. The theoretical results showed good agreement with the experimental ones before the strain reaches 0.038.

关键词: unidirectional solidification;pore-size;hydroxyapatite;replacement;cartilage;porosity;matrix

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共77页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词