孟方礼
,
章冬云
,
常程康
,
徐家跃
,
KAMZIN A S
无机材料学报
doi:10.15541/jim20150583
使用还原铁粉作为铁源,通过超细球磨与喷雾干燥、高温煅烧技术制备了球形微纳米LiFePO4/C复合材料.使用DSC/TG以及XRD对LiFePO4/C复合材料的形成过程进行了分析;使用SEM、穆斯堡谱仪等手段对复合材料进行分析;使用电化学工作站、容量测试仪对其充放电行为进行分析.研究发现,使用该合成技术路线,在500~700℃下能够合成LiFePO4/C复合材料.获得的LiFePO4/C复合材料具有规则的球形外貌,平均尺寸4~5 μm.该微米颗粒由200 nm左右细小颗粒组成,颗粒间具有纳米尺寸微孔.穆斯堡谱仪测试结果表明,复合材料中Fe处于+2价的价态.复合材料在1C倍率下表现出稳定的充放电行为,平均比容量在156 mAh/g,300次循环后,容量保持率为92.8%.该技术制备的LiFePO4/C复合材料具有潜在的应用价值.
关键词:
磷酸铁锂
,
超细球磨
,
穆斯堡谱
,
比容量
,
循环性能
Ting DU Longmei WANG Yeming WU Yuqing ZHANG Aisheng LIU Central Iron and Steel Research Institute
,
Beijing
,
100081
,
China
材料科学技术(英文)
The temperature dependences of the equilibrium constants for the reactions RES_((S))=[RE]+[S]. (RE=Ce,La,Nd,Sm,Y),of the standard Gibbs energies for the RES formed and of the interaction coefficients between RE elements and S for the Fe-base,Ni-base and Cu-base solutions are sum- marized.
关键词:
thermodynamics
,
null
,
null
,
null
,
null
Applied Physics Letters
Transport in S(2) molecules sandwiched between Au electrodes is investigated with a combination of density functional theory and the non-equilibrium Green's function method. We consider four different configurations and find that their conductances are related to the details of the bonding geometry. When S(2) connects to pyramidal-shaped electrodes at the top site, the transmission is governed by a resonance and is strongly affected by the bias. In contrast, the transport of the remaining three configurations is through several closely spaced broad molecular orbitals, and the transmission coefficient is almost flat around the Fermi level. (C) 2012 American Institute of Physics. [doi:10.1063/1.3665614]
关键词:
conductance;molecule
YUE Kexiang DONG Yuanchi East China Institute of Metallurgy
,
Ma'anshan
,
China
金属学报(英文版)
The equilibrium constants between Sr-O,Ba-O and Sr-S,Ba-S in liquid iron at 1570℃ and the interaction coefficients concerning these elements have been determined as follows: K_(Sro)=1.897×10~(-7),e_O~(Sr)=-43.8 K_(BaO)=8.204×10~(-8),e_O~(Ba)=-98.0 K_(SrS)=8.356×10~(-7),e_S~(Sr)=-3.9 K_(BaS)=4.083×10~(-7),e_S~(Ba)=-3.5
关键词:
equilibrium
,
null
,
null
,
null
,
null
Zeitschrift Fur Metallkunde
Young's equation is discussed on a thermodynamic basis. The result shows that the equation is a thermodynamic equilibrium of the wetting system rather than a force balance. The equilibrium satisfies the general equilibrium condition, that is, Gibbs free energy should be minimum when the wetting equilibrium is reached. The validity of Young's equation is only limited to some special cases, namely if the droplet shape is an exact sphere sector. It implies that Young's equation can only be used in the case without the action of gravity. If the curve of the liquid surface changes, the term of cos theta in Young's equation should be replaced by another functional form of the contact angle theta. In the discussion, the author suggests that, in the case of a solid, the surface energy should be considered rather than the surface tension, and the concept of a solid surface tension should be reconsidered based on the difference between a liquid surface and a solid surface.
关键词:
J.X. Zhou
,
R.X. Liu
,
L.L. Chen
,
D.M. Liao
,
H.S. Wei
金属学报(英文版)
Numerical simulation of casting's mold filling process is the main and the most important aspect of the foundry CAE technology. But it is time-consuming; it may take dozens of hours or several days. While with the development of computer hardware, numerical simulation of casting's mold filling process has made rapid progress. The simulation results, therefore, have become more and more practical. This study tries to find some clues of the computational time of mold filling process. Firstly, this paper introduces mathematic model and the basic route of numerical simulation of casting's mold filling process. Then the computational time of mold filling process has been carefully studied, and some new and useful results have been gained from the study of the computational time. Finally, this paper has given some real applications of numerical simulation of casting's mold filling process.
关键词:
numerical simulation
,
null
,
null