{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了研究激光器对Ni基碳化钨合金熔覆层组织结构和性能的影响,分别采用Nd:YAG与CO2激光熔覆技术在NAK80模具钢表面制备了Ni基碳化钨合金层,利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪、显微硬度计以及摩擦磨损试验机测试分析了2种熔覆层的组织结构、显微硬度及耐磨性能。结果表明:2种熔覆层与基体之间均呈现良好的化学冶金结合;熔覆层组织主要为粗大的未熔碳化钨颗粒和均匀分布的树枝晶,Nd:YAG激光熔覆层的组织比CO2激光熔覆层的细小;2种熔覆层相结构主要包括WC,W2C,Cr23C6,NiCr,CrB,以及γ-Ni等;2种激光器熔覆处理后,NAK80模具钢表面硬度和耐磨性都得到显著改善,CO2激光熔覆层的硬度和耐磨性高于Nd:YAG激光熔覆层,2种激光熔覆试样的磨损机制均为磨粒磨损。","authors":[{"authorName":"程虎","id":"6d2345c4-e05b-461a-8b2e-b6a121d0eda6","originalAuthorName":"程虎"},{"authorName":"方志刚","id":"1975dde8-0298-4147-b830-a918f30e35c8","originalAuthorName":"方志刚"},{"authorName":"戴晟","id":"0153951e-6dfc-4496-8de2-a2c5ece39c76","originalAuthorName":"戴晟"},{"authorName":"高玉新","id":"d791fa1e-91e2-4853-b586-6793686eb6e6","originalAuthorName":"高玉新"},{"authorName":"赵先锐","id":"9a3453aa-5294-4439-862d-3c6788c32790","originalAuthorName":"赵先锐"}],"doi":"","fpage":"63","id":"39412d85-a222-4f0f-9840-7a7176e9d686","issue":"4","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"8c3fb5dd-3731-441c-b470-de4ce2960e40","keyword":"激光熔覆","originalKeyword":"激光熔覆"},{"id":"e127e3eb-e8b5-4b2e-b1a4-dd8f8b52e821","keyword":"Ni基碳化钨合金","originalKeyword":"Ni基碳化钨合金"},{"id":"f52d7393-fc1d-48ad-8350-eeea9e8d7642","keyword":"Nd:YAG激光器","originalKeyword":"Nd:YAG激光器"},{"id":"7b250167-6c06-4e22-9858-8418b44c0d2d","keyword":"C02激光器","originalKeyword":"C02激光器"},{"id":"16156e2d-72c9-48ec-a386-b532eeddac09","keyword":"NAK80模具钢","originalKeyword":"NAK80模具钢"},{"id":"d00bea3e-f652-419f-aa90-d1bc3ab5381e","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"823789ff-7a7b-47eb-9ddb-5dcb0f9047e3","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"clbh201204025","title":"NAK80模具钢表面2种激光器熔覆Ni基碳化钨合金层组织结构及耐磨性比较","volume":"45","year":"2012"},{"abstractinfo":"采用激光熔覆技术,在NAK80模具钢表面制备了Ni基碳化钨合金涂层.研究了激光熔覆涂层的组织结构特点及形成规律,测试分析了其显微硬度的分布特征.结果表明:涂层与基体之间呈良好冶金结合,熔覆层组织主要由树枝晶Cr<,23>C<,6>、未熔碳化钨颗粒相、γ-Ni固溶体及少量分布于固溶体中的NiCr和CrB<,2>相组成;涂层的硬度远高于NAK80模具钢基体,从一定程度上改善了模具表面的耐磨性能.","authors":[{"authorName":"程虎","id":"d39ed417-3924-4deb-837d-7da79b8773d9","originalAuthorName":"程虎"},{"authorName":"方志刚","id":"62a6eca7-ee66-45c7-a072-b51132424c20","originalAuthorName":"方志刚"},{"authorName":"赵先锐","id":"bf2c104d-808e-4174-94a1-eb954695e217","originalAuthorName":"赵先锐"},{"authorName":"戴晟","id":"71114fd9-71c9-4ab2-8566-ea7e95000d29","originalAuthorName":"戴晟"},{"authorName":"高玉新","id":"11a271b2-19ad-42e5-9278-de5bdb7f314d","originalAuthorName":"高玉新"}],"doi":"10.3969/j.issn.1001-3660.2011.01.002","fpage":"5","id":"c3a4abdf-981e-4bd6-9201-b3752bf18b28","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"904d8e14-78c0-42f1-8106-e3a8b2e48302","keyword":"NAK80模具钢","originalKeyword":"NAK80模具钢"},{"id":"7a67bfc6-deda-48c1-8f54-5cdb7701923d","keyword":"激光熔覆","originalKeyword":"激光熔覆"},{"id":"e984a482-d77b-414b-aab1-b9da0c521ff3","keyword":"Ni基碳化钨合金","originalKeyword":"Ni基碳化钨合金"},{"id":"97579c90-eced-4977-8c4c-5c233b028668","keyword":"组织","originalKeyword":"组织"},{"id":"cda8175e-0992-4f5d-9212-938f0e6066cc","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"bmjs201101002","title":"NAK80模具钢表面激光熔覆Ni基碳化钨合金涂层的组织和性能","volume":"40","year":"2011"},{"abstractinfo":"采用激光熔覆方法在NAK80模具钢表面制备钴基合金熔覆层,用扫描电镜、X射线衍射仪分析了熔覆层的显微组织,通过干滑动摩擦试验研究了熔覆层的摩擦磨损性能,分析了其磨损机制,并用三维表面形貌仪观察磨损试样的表面形貌。结果表明:熔覆层的主要组成相为Cr28C6、Co3Mo2Si、MoC、FeCr和γ-Co;熔覆层由涂层与基体界面处的平面晶区、涂层中部的胞状树枝晶区和表层的网状等轴晶粒区组成;经激光熔覆处理后的NAK80模具钢表面硬度和耐磨性得到了显著改善,与NAK80模具钢相比,熔覆层表面的平均摩擦因数降低了约349/5,比磨损率下降了约91.30A;熔覆层的磨损机制为粘着磨损和轻微的显微切削。","authors":[{"authorName":"程虎","id":"d5ed8633-b275-43e2-9b9a-23719200cc6b","originalAuthorName":"程虎"},{"authorName":"戴晟","id":"b67e36e2-38d8-4e53-9df6-126cac294509","originalAuthorName":"戴晟"},{"authorName":"方志刚","id":"b8060ab2-0c20-4998-83e0-2470e3109b11","originalAuthorName":"方志刚"},{"authorName":"赵先锐","id":"8af9c7af-210b-491c-91d3-b199657537fa","originalAuthorName":"赵先锐"},{"authorName":"高玉新","id":"0f1733eb-f010-4dfe-9cbc-9e6d049c0d21","originalAuthorName":"高玉新"}],"doi":"","fpage":"37","id":"58e695c9-7552-4006-8534-99cd4990c621","issue":"8","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"25aa2c24-54e6-486e-87ab-ebaed2984166","keyword":"激光熔覆","originalKeyword":"激光熔覆"},{"id":"f404c0f2-f282-42f0-b8e3-f2c364a40c03","keyword":"钴基合金","originalKeyword":"钴基合金"},{"id":"6196820a-8b73-40d5-b9e6-4e96c8ffb18d","keyword":"NAK80模具钢","originalKeyword":"NAK80模具钢"},{"id":"4d6c416d-1aac-4118-8c82-b6a39c88d26f","keyword":"组织","originalKeyword":"组织"},{"id":"fab9fb31-4fca-4078-ad25-42919995ef97","keyword":"摩擦磨损性能","originalKeyword":"摩擦磨损性能"}],"language":"zh","publisherId":"jxgccl201208010","title":"NAK80模具钢表面激光熔覆钴基合金涂层的组织和摩擦磨损性能","volume":"36","year":"2012"},{"abstractinfo":"利用电子材料拉伸试验机、热模拟试验机和分离式Hopkinson压杆系统对NAK80塑料模具钢在较宽温度范围( 25~600℃)和不同应变率(700~5 000 s-1)条件下的力学特性开展了系列的试验研究.结果表明:室温下,NAK80塑料模具钢流变行为对应变率不敏感;相同应变率下(10-2 s-1),其屈服强度和流变应力随温度升高而下降,且高温下热软化效应明显,导致屈服后应变增加而应力下降.以试验数据为基础,拟合了Johnson-Cook模型,和用该模型对不同温度和不同应变率下NAK80塑料模具钢的流变应力进行预测,与试验数据对比表明,拟合的Johnson-Cook模型能够较好的描述NAK80塑料模具钢的流变行为.","authors":[{"authorName":"吕杰","id":"e1bacb1b-e5b8-4979-9b0c-a4d300b82562","originalAuthorName":"吕杰"},{"authorName":"徐飞飞","id":"b3bd894c-ab77-4bd0-9fdc-d03b40727cab","originalAuthorName":"徐飞飞"},{"authorName":"刘其广","id":"873a8c22-d2fa-434a-83da-54226ad77111","originalAuthorName":"刘其广"}],"doi":"10.3969/j.issn.1004-244X.2012.05.017","fpage":"60","id":"047e2fdf-114a-4d8b-b42a-be80f9e1dcdf","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"beed36f0-56e6-4568-9874-e4021188cf96","keyword":"NAK80塑料模具钢","originalKeyword":"NAK80塑料模具钢"},{"id":"b4a800f4-28ae-41f1-99a5-a4a0fc6946de","keyword":"本构关系","originalKeyword":"本构关系"},{"id":"83c66de6-0fc3-4d3c-b400-7be05e2610d9","keyword":"流变行为","originalKeyword":"流变行为"},{"id":"6532c87d-6099-4e53-aed5-da18e2f33a66","keyword":"流变应力","originalKeyword":"流变应力"},{"id":"c597c9dc-3960-43cf-9311-85e5e1b901f3","keyword":"应变率","originalKeyword":"应变率"}],"language":"zh","publisherId":"bqclkxygc201205017","title":"NAK80塑料模具钢本构关系的试验研究","volume":"35","year":"2012"},{"abstractinfo":"通过建立等效二维高速切削有限元模型,对影响模具钢NAK80切削过程的因素进行研究。通过Johnson-Cook材料本构方程描述材料特性,切屑的分离采用基于断裂力学的几何—物理分离准则,用修正的库伦摩擦定律表征前刀面与工件的接触状态。对不同刀具前角、切削速度、切削深度下的高速切削过程进行仿真,分析不同参数下切屑形态、切削力与切削温度的变化情况。结果表明,合理的选择刀具前角、切削速度与切削深度,可以优化切屑形态,降低切削力与切削温度,对切削过程的优化具有一定的指导意义。","authors":[{"authorName":"王义强","id":"42a387be-95f0-4fc2-b8cb-9cc181b7c143","originalAuthorName":"王义强"},{"authorName":"闫国琛","id":"4b80a889-2397-4962-8168-2101b596dba9","originalAuthorName":"闫国琛"},{"authorName":"王晓军","id":"3e9739b9-bd28-4545-947e-3f04263b76b6","originalAuthorName":"王晓军"},{"authorName":"邱红钰","id":"0e68a265-dcd8-4332-bc51-4d31c7474ca6","originalAuthorName":"邱红钰"}],"doi":"","fpage":"5","id":"db7372ff-0dcb-48e9-ae52-20ca193564e8","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"dda11c5e-0d12-45df-a47c-37c7fb83e3be","keyword":"高速切削","originalKeyword":"高速切削"},{"id":"67a4f7da-021f-4a65-aa7c-7f16ac3105b5","keyword":"有限元仿真","originalKeyword":"有限元仿真"},{"id":"c6512007-60a9-4795-a34f-58ccc48efcf3","keyword":"切屑形态","originalKeyword":"切屑形态"},{"id":"c365f8ca-a4ae-4077-810c-92a6841a8adf","keyword":"切削力","originalKeyword":"切削力"},{"id":"0cd28a25-43cc-4961-96a5-5aecb7e4034d","keyword":"切削温度","originalKeyword":"切削温度"}],"language":"zh","publisherId":"bqclkxygc201502002","title":"刀具形状及工艺参数对模具钢NAK80高速切削过程的影响","volume":"","year":"2015"},{"abstractinfo":"以高强度模具钢NAK80为对象,设计以切削速度、每转进给量、切削深度为参数的正交试验,并通过线性回归方法建立切削力及表面粗糙度的数理统计模型;配合材料去除率的理论公式,建立三者为目标函数的多目标优化模型,采用非支配排序遗传算法NSGA-Ⅱ对模型进行寻优求解,研究高强度模具钢铣削过程中的工艺参数优化,获得了多组符合加工要求的工艺参数组合.结果表明:该方法可以获得最优的切削工艺参数组合,可用于指导实际的加工生产.","authors":[{"authorName":"付涛","id":"8f6199d0-ae0a-413f-900e-b9ccffb2849c","originalAuthorName":"付涛"},{"authorName":"刘伟军","id":"6ae71238-a079-435e-8cfb-655b03ab461c","originalAuthorName":"刘伟军"},{"authorName":"赵吉宾","id":"41e1cfa5-7d7f-4024-a68e-7ce427d85a1d","originalAuthorName":"赵吉宾"}],"doi":"","fpage":"85","id":"8ed3a73d-15be-4926-8e7b-e8a0c766e73b","issue":"12","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"93526ded-3fd8-4fb7-b778-929b3488368f","keyword":"NAK80","originalKeyword":"NAK80钢"},{"id":"20415495-17ed-4c69-ae71-d01f1616c8d3","keyword":"切削参数","originalKeyword":"切削参数"},{"id":"13f0827a-acd2-44ae-a357-1aad34c79172","keyword":"数理统计模型","originalKeyword":"数理统计模型"},{"id":"87680054-204c-4033-8b1a-3610924e55d8","keyword":"多目标优化","originalKeyword":"多目标优化"}],"language":"zh","publisherId":"jxgccl201312020","title":"基于NSGA-Ⅱ算法的高强模具钢切削参数优化方法","volume":"37","year":"2013"},{"abstractinfo":"阐述了模具钢的涵义、性能、现状及与发达国家的差距,根据各行各业及国民经济\"十五\"规划的要求,提出了发展模具钢的一些基本想法和对策建议.","authors":[{"authorName":"徐明华","id":"979f9490-884f-454a-8da2-65c3c9cffde4","originalAuthorName":"徐明华"}],"doi":"10.3969/j.issn.1001-7208.2003.06.007","fpage":"25","id":"df59cdf8-3af9-4671-ab02-38328e2b914e","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"f6bd2ac2-21e2-48b1-9868-a3e6a5a05657","keyword":"模具钢","originalKeyword":"模具钢"},{"id":"d9a95657-9112-4012-afea-8677bb9258ed","keyword":"发展","originalKeyword":"发展"},{"id":"0ab37858-0efd-4fab-8824-a3dd5e09d5b4","keyword":"市场需求","originalKeyword":"市场需求"}],"language":"zh","publisherId":"shjs200306007","title":"模具钢的市场和发展","volume":"25","year":"2003"},{"abstractinfo":"综述了中国模具钢的发展状况,分为冷作模具钢、热作 模具钢和塑料模具钢三类,可以认为中国已建立了较完整的模具钢钢种系列,其中一些的 性能达到国际先进水平。并对中国今后模具钢的发展提出了建议。","authors":[{"authorName":"崔崑","id":"c6a1c434-708b-4936-870f-2a8cf9882cfb","originalAuthorName":"崔崑"}],"doi":"10.3969/j.issn.1000-3738.2001.01.003","fpage":"1","id":"6a82ba03-e5fb-4203-bbe5-109ab4aa02f6","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"6a31458f-0abe-49e4-b5d1-afe4781cda08","keyword":"模具钢","originalKeyword":"模具钢"},{"id":"70d8dbcd-e60f-45ff-b8b6-32ef5f389c56","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"},{"id":"39019e91-8e10-4ccb-ba88-17fc62f36254","keyword":"热作模具钢","originalKeyword":"热作模具钢"},{"id":"cd24e9c0-244f-481a-b4ab-2e833bf567b3","keyword":"塑料模具钢","originalKeyword":"塑料模具钢"}],"language":"zh","publisherId":"jxgccl200101003","title":"中国模具钢现状及发展(Ⅰ)","volume":"25","year":"2001"},{"abstractinfo":"归纳了常用和新型的热作模具钢,并着重介绍热作模具钢中的合金元素,碳化物及其强化机制","authors":[{"authorName":"程先华","id":"48f12958-9b07-42f9-a5c6-e8b818350568","originalAuthorName":"程先华"}],"doi":"10.3969/j.issn.1001-7208.2001.02.001","fpage":"1","id":"26f69d1a-690b-4bc8-abcf-2520cced5638","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"894ca327-d1e7-42ff-abc5-57bd1302cbb2","keyword":"热作模具钢","originalKeyword":"热作模具钢"},{"id":"628d0d83-5853-4b47-b393-43d2fc1874e5","keyword":"合金化","originalKeyword":"合金化"},{"id":"d10ef728-5a96-4ced-b31f-f0fbfd551426","keyword":"强化机制","originalKeyword":"强化机制"}],"language":"zh","publisherId":"shjs200102001","title":"热作模具钢合金化及其强化机制","volume":"","year":"2001"},{"abstractinfo":"通过常规疲劳试验和超声疲劳试验测试模具钢107周次疲劳性能和108超高周次疲劳性能,对模具钢超高周疲劳试样断口进行了分析.将两种不同频率下模具钢试样的疲劳性能进行对比探讨模具钢的频率效应,将20 kHz频率下两种不同尺寸试样的疲劳性能进行对比探讨模具钢的尺寸效应.结果表明:20 kHz和130 Hz下模具钢1 07周次的疲劳极限相差9%,不同尺寸的两种圆弧形试样108周次下的疲劳极限相差16%.","authors":[{"authorName":"彭文杰","id":"54f97791-9c11-4a24-9bea-2052ee5c23b5","originalAuthorName":"彭文杰"},{"authorName":"龙会才","id":"e5280109-aa88-40ac-b65c-190caa58cf49","originalAuthorName":"龙会才"},{"authorName":"王悦","id":"25f7c415-f22f-4ebe-a181-decd93177070","originalAuthorName":"王悦"},{"authorName":"薛欢","id":"95a55b2b-06ae-4394-9054-0a2160576f37","originalAuthorName":"薛欢"},{"authorName":"葛锐","id":"9395a230-efc8-466c-ab2d-c0998f2d2fcc","originalAuthorName":"葛锐"}],"doi":"10.13228/j.b0yuan.issn1001-0777.20140057","fpage":"5","id":"0b55afe5-a4ea-486c-8874-71dd9762e4cb","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"ae21a39c-e3f8-43c2-b7cf-dfaf6168c4bc","keyword":"模具钢","originalKeyword":"模具钢"},{"id":"9de8e04a-84a3-4791-bbee-c2d5da2f665d","keyword":"超高周疲劳试验","originalKeyword":"超高周疲劳试验"},{"id":"8302ef54-a3e3-4386-8e25-05b726454c56","keyword":"频率效应","originalKeyword":"频率效应"},{"id":"79d1418d-cf4c-4656-9733-51912fe556db","keyword":"尺寸效应","originalKeyword":"尺寸效应"}],"language":"zh","publisherId":"wlcs201502002","title":"模具钢超高周疲劳性能探讨","volume":"33","year":"2015"}],"totalpage":2913,"totalrecord":29130}