Shuyong DONG
,
Shoumei XIONG
,
Baicheng LIU
材料科学技术(英文)
A mathematical model to calculate the size and distribution of microporosities was studied and coupled with a stochastic microstructure evolution model. The model incorporates various solidification phenomena such as grain structure evolution, solidification shrinkage, interdendritic fluid flow and formation and growth of pores during solidification processes. The nucleation and growth of grains were modeled with a cellular automaton method that utilizes the results from a macro scale modeling of the solidification process. Experiments were made to validate the proposed models. The calculated results of aluminum alloy castings agreed with the experimental measurements.
关键词:
Numerical simulation
,
null
,
null
Physical Review B
In a recent publication [S. Dong et al., Phys. Rev. Lett. 103, 127201 (2009)], two (related) mechanisms were proposed to understand the intrinsic exchange bias present in oxides heterostructures involving G-type antiferromagnetic perovskites. The first mechanism is driven by the Dzyaloshinskii-Moriya interaction, which is a spin-orbit coupling effect. The second is induced by the ferroelectric polarization, and it is only active in heterostructures involving multiferroics. Using the SrRuO(3)/SrMnO(3) superlattice as a model system, density-functional calculations are here performed to verify the two proposals. This proof-of-principle calculation provides convincing evidence that qualitatively supports both proposals.
关键词:
thin-films;weak ferromagnetism;superlattices;anisotropy;bifeo3;srruo3;model