{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究SiC纤维增强钛基复合材料(SiCf/Fi-6Al-4V)室温疲劳行为和损伤演化机制.疲劳试验条件:载荷控制、应力比0.1和加载频率10 Hz.采用疲劳断裂试验建立最大加载应力为600~1200 MPa内SiCf/Ti-6A1-4V的S-N曲线.采用疲劳中止试验以及SEM显微分析研究应力水平对SiCf/Ti-6Al-4V疲劳损伤演化的影响.结果表明,SiCf/Ti-6Al-4V疲劳损伤萌生模式与演化过程与应力水平密切相关.在高应力水平(Smax=1000 MPa),纤维开裂是主要损伤萌生模式.一旦2或3根纤维断裂后,纤维裂纹和基体裂纹开始联接并形成宏观扩展裂纹.在中等应力水平(Smax=800 MPa),基体裂纹萌生与扩展是主要损伤模式.多条基体裂纹萌生于试样外表面棱边和离外表面附近试样内部开裂的纤维基体界面处.基体裂纹均沿垂直于加载方向扩展,且大部分纤维未断裂并纤维桥接基体裂纹.在低应力水平(Smax=600 MPa),仅在C涂层和界面反应层之间和C涂层内部观察到局部界面脱粘现象.","authors":[{"authorName":"冯广海","id":"49263b1e-562c-4e41-b59a-6cc6e6b6d148","originalAuthorName":"冯广海"},{"authorName":"杨延清","id":"fd9552aa-1b50-4f1e-89cc-c79104a23069","originalAuthorName":"杨延清"},{"authorName":"李健","id":"6fabf75c-731a-4bd8-86f0-61a206ca1862","originalAuthorName":"李健"},{"authorName":"","id":"0043e631-91b3-4806-8f43-d186febfecda","originalAuthorName":"罗贤"},{"authorName":"黄斌","id":"892df1e7-a7de-4026-a595-63a769b6f884","originalAuthorName":"黄斌"},{"authorName":"孙庆","id":"2a8df139-1ee5-48b3-aa88-c2b06ece2003","originalAuthorName":"孙庆"},{"authorName":"吴晨","id":"cfaaa605-599b-4b5e-8dd8-ed0bb76b84ed","originalAuthorName":"吴晨"},{"authorName":"陈彦","id":"47539907-2ac4-4301-a304-763d1475e6fb","originalAuthorName":"陈彦"}],"doi":"","fpage":"2049","id":"8ed659f9-e242-4345-a4bb-88cfb004657d","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"02a02572-0773-4b86-8bf6-431b56068810","keyword":"SiC纤维","originalKeyword":"SiC纤维"},{"id":"49ecc8b5-d967-4863-9d2b-ff86f59132b5","keyword":"钛基复合材料","originalKeyword":"钛基复合材料"},{"id":"0eef154e-b6f2-4af7-ab53-6fcd1775217e","keyword":"疲劳行为","originalKeyword":"疲劳行为"},{"id":"736a3011-0da6-487d-9ced-d30f5e965e5f","keyword":"疲劳损伤演化","originalKeyword":"疲劳损伤演化"}],"language":"zh","publisherId":"xyjsclygc201409001","title":"SiC纤维增强Ti-6Al-4V复合材料的疲劳行为及损伤演化研究","volume":"43","year":"2014"},{"abstractinfo":"对分子动力学和第一性原理的基本理论进行了简介,综述了近年来国内外使用经典分子动力学和第一性原理分子动力学方法对复合材料界面进行模拟研究的进展.分别对界面原子构型、电子结构、相互作用能、应力和载荷传递、界面力学性能参数,以及其变形失效等方面的模拟计算进行了概述,归纳分析了分子动力学模拟所能解决的各类界面问题,并对其应用和发展方向进行了展望.","authors":[{"authorName":"李健","id":"a1829269-3b93-462a-b9b7-2e28d389e55d","originalAuthorName":"李健"},{"authorName":"杨延清","id":"86cb5f0a-4948-471f-89d3-536fef6d7e47","originalAuthorName":"杨延清"},{"authorName":"","id":"2491f47d-427c-4c51-9cc5-3b0ff536764e","originalAuthorName":"罗贤"},{"authorName":"金娜","id":"ddad07e6-5abe-4c45-a927-efa8afac703c","originalAuthorName":"金娜"},{"authorName":"李茂华","id":"708a4893-3c37-4c99-937d-fc5d1b0bab21","originalAuthorName":"李茂华"},{"authorName":"黄斌","id":"6d342653-e178-4cb7-ada5-3970c8fb5b36","originalAuthorName":"黄斌"},{"authorName":"韩明","id":"17a225bf-1185-46d5-9475-e85923752f28","originalAuthorName":"韩明"}],"doi":"","fpage":"644","id":"59b6c0a7-1e38-4bd1-b97e-7e4a99a7ab44","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"17db05a9-698e-4622-84a8-0a6835ae27cd","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"f73eaf94-554e-478c-aa12-93d8e7243f5e","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"bd2c79df-ec52-4a32-9bb1-b0d093a602f5","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"xyjsclygc201303042","title":"分子动力学模拟在复合材料界面研究中的进展","volume":"42","year":"2013"},{"abstractinfo":"研究了SiC_f/Cu基复合材料分别在有无Ti6Al4V界面改性涂层两种情况下的纵向热膨胀行为,并采用扫描电镜对热循环后的试样进行显微形貌观察.结果表明,界面结合强度对纤维增强金属基复合材料的纵向热膨胀行为有很大影响.对于没有Ti6Al4V涂层的复合材料,其热膨胀行为不稳定,在经历连续两次热循环后,其纵向均表现为正的残余应变,原因是基体发生了严重的界面脱粘、滑移和膨胀;而对于有Ti6Al4V涂层的复合材料,其纵向热膨胀系数明显减小,两次热循环后其尺寸保持稳定,纤维/基体界面结合也保持稳定.","authors":[{"authorName":"","id":"3c08154f-2309-433f-845f-cf58d97740b3","originalAuthorName":"罗贤"},{"authorName":"杨延清","id":"e9d431ce-dc84-4892-bfa3-f0e2e0965ae6","originalAuthorName":"杨延清"},{"authorName":"黄斌","id":"39f54fae-61b3-4138-9a07-09fd672fbb18","originalAuthorName":"黄斌"},{"authorName":"李建康","id":"3fe41456-e425-4077-a73f-413b82239454","originalAuthorName":"李建康"},{"authorName":"刘翠霞","id":"bdb0cff0-4b56-48fc-8b7e-407622d4fd15","originalAuthorName":"刘翠霞"},{"authorName":"陈彦","id":"0ab3d11d-6c16-4671-83d0-366aba1d599d","originalAuthorName":"陈彦"}],"doi":"","fpage":"660","id":"0dd3d452-8003-4e66-9273-2281a9ce8e37","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"f937c32c-02a3-476d-aa43-bf1e3992af47","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"},{"id":"ac487e5a-903c-46ca-a70c-3eab5b34e8e6","keyword":"SiC纤维","originalKeyword":"SiC纤维"},{"id":"0e509220-cf2f-472b-9548-cbb1869c099b","keyword":"热膨胀系数","originalKeyword":"热膨胀系数"},{"id":"f17abb8a-e316-4bd9-83ac-f7c60b3f75a2","keyword":"中间层","originalKeyword":"中间层"},{"id":"0ddccd56-e813-4c91-869c-83270ba0d4cc","keyword":"界面结合强度","originalKeyword":"界面结合强度"}],"language":"zh","publisherId":"xyjsclygc201004021","title":"界面改性对SiC_f/Cu基复合材料热膨胀性能的影响","volume":"39","year":"2010"},{"abstractinfo":"利用纤维涂层法和真空热压工艺制备SiC纤维增强γ-TiAl金属间化合物(Ti-43Al-9V)复合材料,采用扫描电镜(SEM)、能谱(EDS)、X射线衍射(XRD)仪等研究复合材料的界面反应产物和界面反应产物的生长动力学.结果发现,SiCf/Ti-43A1-9V复合材料的界面反应生成了TiC、Ti2AlC和Ti5Si3,分三层分布.从SiC纤维到Ti-43Al-9V基体,界面反应产物序列为:TiC/Ti2AlC/Ti5 Si3 +Ti2AlC(颗粒).界面反应产物的生长受扩散控制并遵循抛物线生长规律,其生长激活能Q和指前因子k0分别为190 kJ/mol和2.5×10-5 m·s-1/2.与其它Ti合金基的复合材料相比,γ-TiAl基复合材料的界面热稳定性更好.","authors":[{"authorName":"代志强","id":"6a25ee8e-bb1d-476d-a363-f1325331b5c4","originalAuthorName":"代志强"},{"authorName":"杨延清","id":"4dce0656-c832-4cb5-a032-8c0fa7473007","originalAuthorName":"杨延清"},{"authorName":"张伟","id":"db3dd572-1e89-48d0-9f72-eea0d9ac17fe","originalAuthorName":"张伟"},{"authorName":"赵光明","id":"a70c9e84-b9d5-4d9f-a9d1-53a2fd4fe4ad","originalAuthorName":"赵光明"},{"authorName":"","id":"eaf7223f-d9e7-41eb-b7bd-80c56379afb3","originalAuthorName":"罗贤"},{"authorName":"黄斌","id":"ea08be51-9ece-4536-8280-55a946cdcb60","originalAuthorName":"黄斌"}],"doi":"","fpage":"790","id":"12b67c3a-4036-424d-ab01-d07aa651ed7b","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5753f1db-b0ff-41f8-b053-feeb5b25c759","keyword":"SiC纤维","originalKeyword":"SiC纤维"},{"id":"c0e4ad65-6a04-42e3-a85d-b345771a2941","keyword":"γ-TiAl","originalKeyword":"γ-TiAl"},{"id":"cd53a830-7f99-48a4-b34a-de6ef620cb64","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"f3bc7cd7-fb04-474f-9bde-6df05d0ecc71","keyword":"界面反应","originalKeyword":"界面反应"},{"id":"45a29950-d097-4f61-81f4-6fd0d0bc6b9f","keyword":"生长动力学","originalKeyword":"生长动力学"}],"language":"zh","publisherId":"xyjsclygc201205009","title":"SiCf/Ti-43Al-9V复合材料的界面反应","volume":"41","year":"2012"},{"abstractinfo":"采用I2作为输运剂,以单质Zn和Se为原料运用化学气相输运法制备了ZnSe晶体.比较了不同I2含量下所生长ZnSe晶体的性能,借助XRD、SEM和EDS检测方法分析了ZnSe晶体的结构、形貌和成分.结果表明:I2含量对ZnSe晶体性能具有重要的影响,通过比较3组I2含量所制备的ZnSe晶体,确定出当I2含量为4 mg/cm3时,所生长的ZnSe晶体具有较好的结晶质量,其晶格常数为5.668 nm.测定ZnSe中Zn与Se的原子分数比为1∶0.99,且只有1个衍射峰(2θ=27.2°),其晶面指数为(111).SEM图像表面比较平滑,没有明显气孔.在此条件下,ZnSe晶体的红外透过性能最好,红外透过率为53.07%~62.61%.其他两种I2含量下所生长的ZnSe晶体结晶质量较差,XRD图谱显示有多个衍射峰,SEM图像表面凹凸不平,有明显气泡和孔洞,并且其红外透过率较低.","authors":[{"authorName":"刘翠霞","id":"af0bdf13-1533-4a06-b198-fe88cbc7ae07","originalAuthorName":"刘翠霞"},{"authorName":"坚增运","id":"36cd6c22-b0eb-492c-afea-6e58d7bdbcd3","originalAuthorName":"坚增运"},{"authorName":"","id":"8328ae54-2aad-4f83-aa91-510afa13f439","originalAuthorName":"罗贤"},{"authorName":"王宇鹏","id":"49672156-3c9b-4ec7-b157-d0df521ed6b6","originalAuthorName":"王宇鹏"}],"doi":"","fpage":"866","id":"1c37791f-73dd-49a8-932d-f3b57010bf96","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"b32dc0af-e0e3-4bff-9055-c06b99299cdf","keyword":"ZnSe晶体","originalKeyword":"ZnSe晶体"},{"id":"91e27a32-ebc6-455c-923f-c483fe361c64","keyword":"化学气相输运法","originalKeyword":"化学气相输运法"},{"id":"7b51bfd5-6675-4350-944c-2b211e3e0047","keyword":"碘输运剂","originalKeyword":"碘输运剂"}],"language":"zh","publisherId":"xyjsclygc201404020","title":"碘输运剂对CVT法制备ZnSe单晶的性能影响研究","volume":"43","year":"2014"},{"abstractinfo":"通过纤维涂层法(MCF)、结合热等静压(HIP)工艺制备了SiCf/Ti600复合材料,经不同条件真空热暴露试验后,结合SEM、EDS、XRD等分析技术对界面反应动力学和反应产物相形成的反应序列进行初步研究.结果表明,反应元素C、Si、Ti等出现浓度起伏,合金元素Al并没有显著扩散进入界面反应产物层,而是在界面反应前沿堆积,其界面反应产物被确认为:TiC、Ti5Si3和Ti3SiC2,界面反应产物的生长受扩散控制且遵循抛物线生长规律,其生长激活能Qk及指数系数Ko分别为266.46 kJ·mol-1.37x10-3m·s-1/3.","authors":[{"authorName":"梅运旺","id":"b84d9362-afd8-4dfe-a6f4-e5d4194b2277","originalAuthorName":"梅运旺"},{"authorName":"杨延清","id":"18707834-ff89-4789-ab36-79bcf6efdcb4","originalAuthorName":"杨延清"},{"authorName":"","id":"6cf8777a-95e8-42c5-98f7-dd74d78ce467","originalAuthorName":"罗贤"},{"authorName":"李健康","id":"c4663032-ef4f-4a6c-985c-ca47a81b6b4e","originalAuthorName":"李健康"},{"authorName":"马志军","id":"a0d75a41-8f01-474e-af39-f5a8d978d1b4","originalAuthorName":"马志军"},{"authorName":"陈彦","id":"34dc191a-a10f-477a-9ef1-c3b16d2fbaac","originalAuthorName":"陈彦"}],"doi":"","fpage":"1839","id":"1f52526c-8b30-4559-84f5-7139502338c8","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1b16442d-86d0-4d4e-95ae-f5d32f18303c","keyword":"SiC/Ti600","originalKeyword":"SiC/Ti600"},{"id":"489e0383-9df2-48d6-85cb-5ffa2862ce48","keyword":"界面反应","originalKeyword":"界面反应"},{"id":"457d5002-0c3e-4f2d-ab01-b90b6c75556a","keyword":"生长动力学","originalKeyword":"生长动力学"},{"id":"13b35c53-470d-4b20-9d0c-99b8fe5bbd2d","keyword":"生长激活能","originalKeyword":"生长激活能"}],"language":"zh","publisherId":"xyjsclygc200810032","title":"SiC纤维增强Ti600复合材料界面研究","volume":"37","year":"2008"},{"abstractinfo":"在化学气相沉积SiC膜过程中, 分别考虑了化学反应的动力学以及基底表面原子的沉积与扩散, 利用动力学蒙特卡罗方法, 建立了SiC膜{111}取向的三维原子尺度模型, 使用MATLAB模拟了原子尺度的SiC膜{111}取向生长过程. 模拟结果表明: 膜的生长经历了小岛的生成、小岛的合并与扩展、小岛间达到动态平衡三个阶段. 随着温度的升高, 膜的生长速率、表面粗糙度以及膜的厚度都增大. 随着生长速率的增大, 表面粗糙度增大, 相对密度减小. 模拟结果与理论和实验具有较好的吻合性.
","authors":[{"authorName":"刘翠霞","id":"fc08575b-40b1-457d-bca0-8eac0a65bc80","originalAuthorName":"刘翠霞"},{"authorName":"杨延清","id":"f811e908-8d49-4ff2-993e-2cf194197cb3","originalAuthorName":"杨延清"},{"authorName":"黄斌","id":"98c74cf4-c229-4fa9-b4ab-8eb192b9dad4","originalAuthorName":"黄斌"},{"authorName":"张荣军","id":"0e7d1c21-024c-4d02-b008-d3897ab59f40","originalAuthorName":"张荣军"},{"authorName":"","id":"a360ab13-77d7-4953-a785-7a5ceef1c205","originalAuthorName":"罗贤"},{"authorName":"任晓霞","id":"367b543d-547f-4ae4-aae9-4ada0e0de0dd","originalAuthorName":"任晓霞"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2008.00933","fpage":"933","id":"241f4c53-04e7-43d1-bd20-0eddb20d0d38","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"e102912a-3831-423d-b82f-76600d555234","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"5ec75689-d335-422b-8128-0f79a1f99d6f","keyword":" chemical vapor deposition","originalKeyword":" chemical vapor deposition"},{"id":"dd924042-eeba-4a67-8797-333cc5d20541","keyword":" kinetic monte carlo simulation","originalKeyword":" kinetic monte carlo simulation"},{"id":"a779b953-450b-4294-8f97-226a873d2bea","keyword":" surface roughness","originalKeyword":" surface roughness"},{"id":"7058dc5f-f622-4113-a9fd-5ae27cd13902","keyword":" relative density","originalKeyword":" relative density"}],"language":"zh","publisherId":"1000-324X_2008_5_38","title":"化学气相沉积SiC膜{111}取向生长的原子尺度模拟","volume":"23","year":"2008"},{"abstractinfo":"采用十字形试样测试分析有C涂层和无C涂层两种SiC纤维增强钛基复合材料的横向力学性能,以横向载荷作用下应力-应变曲线上的非线性拐点计算界面的强度.结果表明,有C涂层的界面横向开裂强度为53 MPa,低于无C涂层的界面开裂强度196 MPa,并且前者在横向载荷作用下沿C涂层与纤维之间开裂,而后者沿反应生成物与基体间开裂;体积分数为30%的多根纤维钛基复合材料的非线性拐点应力低于单根纤维复合材料,这主要是由于残余应力的减少引起,界面强度并没有明显变化.","authors":[{"authorName":"李建康","id":"0a19e1db-09c9-4ff8-9abc-1f16fe5b972f","originalAuthorName":"李建康"},{"authorName":"杨延清","id":"e6ab73a0-2320-42e7-90ae-4cbc5c953225","originalAuthorName":"杨延清"},{"authorName":"","id":"3a461777-4f01-44e9-bab2-f80dd569f2a4","originalAuthorName":"罗贤"},{"authorName":"张荣军","id":"89e1fbac-d229-4613-bc12-68298064f67e","originalAuthorName":"张荣军"}],"doi":"","fpage":"426","id":"2443ae41-0acc-4351-b4c3-11e7e2513b84","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5dfd5fa6-eff1-4e2a-9554-3643006093cd","keyword":"钛基复合材料","originalKeyword":"钛基复合材料"},{"id":"8e9be7dc-663e-4c94-8b35-8d332bfcc96e","keyword":"横向力学性能","originalKeyword":"横向力学性能"},{"id":"231444a1-5de4-4faf-a8a2-d1a5cb287459","keyword":"界面强度","originalKeyword":"界面强度"}],"language":"zh","publisherId":"xyjsclygc200903012","title":"SiC纤维增强钛基复合材料的横向力学性能","volume":"38","year":"2009"},{"abstractinfo":"从微区角度建立了评定界面剪切强度的理论公式,用有限元方法验证该公式的准确性.此外,分析了钛基复合材料底部脱粘现象的原因以及热残余应力对纤维顶出最大载荷的影响.","authors":[{"authorName":"原梅妮","id":"fbc7c970-7248-4944-972a-c2a151e084f4","originalAuthorName":"原梅妮"},{"authorName":"杨延清","id":"8922f804-b91b-4510-a3b6-d4565fca6d14","originalAuthorName":"杨延清"},{"authorName":"李健康","id":"2c9c2543-abb1-4d8a-be94-b9fd37724fb1","originalAuthorName":"李健康"},{"authorName":"","id":"e30a95e0-2999-4e84-80e9-63c327ef5b75","originalAuthorName":"罗贤"},{"authorName":"恒军","id":"955fc16f-0d7a-4e1b-aa9b-b7bd25898e65","originalAuthorName":"罗恒军"}],"doi":"","fpage":"779","id":"25830af1-20d0-427c-a2d8-8e8a788e72c9","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"83845ab7-880e-41cd-882e-d00a387d95fa","keyword":"钛基复合材料","originalKeyword":"钛基复合材料"},{"id":"df6a61af-a1ed-40a9-963d-026af964b257","keyword":"SiC纤维","originalKeyword":"SiC纤维"},{"id":"09c82687-0540-4d7a-8098-fe0fd300973f","keyword":"界面强度","originalKeyword":"界面强度"},{"id":"65af1ba7-dfc7-4c77-a0e1-9132e3bd2eef","keyword":"有限元分析","originalKeyword":"有限元分析"}],"language":"zh","publisherId":"xyjsclygc200805007","title":"评定钛基复合材料界面强度的新方法","volume":"37","year":"2008"},{"abstractinfo":"通过SiC/Ti6Al4V钛基复合材料的制备及在不同条件下的热处理试验,利用SEM,EDS及XRD分析技术研究复合材料界面反应产物相的形成及反应元素的扩散路径.结果表明:反应元素如C,Ti,Si在界面反应层中出现浓度波动,合金元素Al并没有显著扩散进入界面反应产物层,而是在界面反应前沿堆积,其界面反应产物被确认为Ti3SiC2,TiCx,Ti5Si3Cx和Ti3Si;在界面反应初期,存在着TiC+Ti5Si3Cx双相区,当形成各界面反应产物单相区时,SiC/Ti6Al4V复合材料界面反应扩散的完整路径应为:SiC | Ti3SiC2 | Ti5Si3Cx | TiCx | Ti3Si | Ti6Al4V+TiCx;界面反应产物层的生长受扩散控制,遵循抛物线生长规律,其生长激活能Qk及k0分别为290.935 kJ·mol-1,2.49×10-2m·s-1/2.","authors":[{"authorName":"吕祥鸿","id":"0d338c9d-3c6a-4424-bcc6-9bbb524bf73a","originalAuthorName":"吕祥鸿"},{"authorName":"杨延清","id":"710df210-2d2c-4c80-8d3b-460d7612b99e","originalAuthorName":"杨延清"},{"authorName":"马志军","id":"7d00b171-e789-4230-894a-70161e9d6223","originalAuthorName":"马志军"},{"authorName":"黄斌","id":"adacec38-2d5f-415f-9478-802b43024174","originalAuthorName":"黄斌"},{"authorName":"","id":"deb8128c-b973-47fd-9b7a-f200fcc660bd","originalAuthorName":"罗贤"},{"authorName":"陈彦","id":"3dba4633-ccb3-4a00-9cc6-735d65ef2f14","originalAuthorName":"陈彦"}],"doi":"","fpage":"1162","id":"2689a28b-d5ae-496a-a797-f220190e29da","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"756cf822-a540-49d7-99a0-c7170874b534","keyword":"SiC/Ti6Al4V","originalKeyword":"SiC/Ti6Al4V"},{"id":"4fd4b2ff-4948-4b41-86a4-4167945beb68","keyword":"界面反应产物","originalKeyword":"界面反应产物"},{"id":"7cece6aa-441d-47c1-b207-d7b59d7a9065","keyword":"扩散路径","originalKeyword":"扩散路径"},{"id":"bbdb27da-0659-42ef-b40c-c300be660897","keyword":"生长激活能","originalKeyword":"生长激活能"}],"language":"zh","publisherId":"xyjsclygc200707008","title":"SiC/Ti6Al4V复合材料界面反应产物的形成序列及扩散路径","volume":"36","year":"2007"}],"totalpage":31,"totalrecord":307}