{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了研究纤维增强木材陶瓷复合材料的界面结构与受力情况,利用液化木材、炭粉和碳纤维制备层状结构木材陶瓷.采用扫描电镜和高分辨率透射电镜对其基本结构与界面进行观测,并通过显微拉曼光谱检测拉伸试件G'的位移来判断界面的结合情况.同时,基于双线性软化本构模型,采用Abaqus软件对界面层在应力传递中的作用与方式进行了数值分析.扫描电镜与透射电镜的观测表明:碳纤维增强木材陶瓷具有清晰的层状结构,且无定形碳与玻璃碳之间存在强界面结合.拉曼光谱的测试发现:加压烧结试件拉伸后的G'向低波数的位移更大,证明加压烧结能够改善玻璃碳与碳纤维之间界面的结合强度.数值分析显示:在受力过程中,界面层对碳纤维与基体材料之间的应力传递起着重要作用,同时,随着界面层强度与厚度的增加,其所能承受的载荷增大,传递给基体材料的等效应力也随之增加.","authors":[{"authorName":"孙德林","id":"75c3eab3-3d32-44b1-b9b8-64e4dd273055","originalAuthorName":"孙德林"},{"authorName":"","id":"e01e48fa-9901-488b-aca8-19865573995d","originalAuthorName":"郝晓峰"},{"authorName":"洪璐","id":"7aee4900-c027-46f1-9d49-937af0189718","originalAuthorName":"洪璐"},{"authorName":"唐志宏","id":"ffd2df31-49a8-4df5-8c8c-1f2e4b43add8","originalAuthorName":"唐志宏"},{"authorName":"张绍明","id":"07f6e521-2164-4608-8854-31d0233cda0c","originalAuthorName":"张绍明"}],"doi":"10.15541/jim20160049","fpage":"969","id":"e3441ac0-5bd4-450f-adfc-78cd5ae34161","issue":"9","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"3b3941df-555d-4760-84c1-204016bed803","keyword":"层状木材陶瓷","originalKeyword":"层状木材陶瓷"},{"id":"229eb1ac-9dc3-4c1b-a1cb-c0ee95e2b44e","keyword":"碳纤维增强","originalKeyword":"碳纤维增强"},{"id":"c5f89078-d477-4f1b-affe-ecd9b664bc14","keyword":"界面结构","originalKeyword":"界面结构"},{"id":"c11869ba-9de7-4530-a42e-8bd231a48256","keyword":"应力分析","originalKeyword":"应力分析"}],"language":"zh","publisherId":"wjclxb201609011","title":"碳纤维增强层状木材陶瓷的界面结构及受力分析","volume":"31","year":"2016"},{"abstractinfo":"以液化木材和炭粉制备的片状木材陶瓷为基体材料、以碳纤维为增强材料,通过结构设计和应力应变分析建立单元结构模型和应力应变模型.SEM观测结果显示:根据结构模型所制备的试件具有典型的层状结构,且在断裂过程中有利于裂纹偏转.力学行为分析表明:在脱粘之前,载荷主要集中在基体材料上,当发生脱粘后载荷则主要由增强材料承担.同时,由于层状结构和增强碳纤维的运用使得力学性能大幅度提高,尤其是断裂韧性得到明显改善,在一定程度上能够避免脆性断裂的发生.","authors":[{"authorName":"孙德林","id":"24e7196b-bc37-4df6-a150-81d0198bdd0c","originalAuthorName":"孙德林"},{"authorName":"","id":"a3a36c2f-1c29-4cf2-9cf3-0a567b2c2abd","originalAuthorName":"郝晓峰"},{"authorName":"余先纯","id":"4a40d96f-7021-49e1-8c37-3c43521f66a8","originalAuthorName":"余先纯"},{"authorName":"陈新义","id":"4bd34a08-c271-4d7b-9ee8-3ffc4041563d","originalAuthorName":"陈新义"},{"authorName":"刘明辉","id":"e16ca278-d584-4127-be99-e0679dc725df","originalAuthorName":"刘明辉"}],"doi":"10.11896/j.issn.1005-023X.2015.20.011","fpage":"51","id":"80162fda-2429-4945-90dc-3dc4b0b93a22","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"349f9c90-ab7d-4dfe-bad7-d972f41d1f5d","keyword":"层状木材陶瓷","originalKeyword":"层状木材陶瓷"},{"id":"d8efebc2-059f-42c4-a8cf-cc33151178c7","keyword":"碳纤维增强","originalKeyword":"碳纤维增强"},{"id":"7a8db65d-9eef-4830-9f75-2b1a8590037f","keyword":"结构特征","originalKeyword":"结构特征"},{"id":"d7945dc4-270f-4d9c-9f27-513429a20050","keyword":"力学行为分析","originalKeyword":"力学行为分析"}],"language":"zh","publisherId":"cldb201520011","title":"碳纤维增强层状木材陶瓷的结构特征与力学行为研究","volume":"29","year":"2015"},{"abstractinfo":"为了探讨烧结温度对纤维增强木材陶瓷界面结构的影响,用液化木材和炭粉制备片状基体材料,并通过酚醛树脂与碳纤维复合、在不同的烧结温度条件下制备碳纤维/层状木材陶瓷复合材料.利用扫描电镜(SEM)、场发射透射电镜(FETEM)、显微拉曼光谱(MRS)和X射线光电子能谱(XPS)等方法对其界面结构进行测试与表征.结果表明:在基体材料中,无定形碳与玻璃碳相互融合,界面区过渡自然,无明显界限;而在碳纤维与玻璃碳所形成的界面区中,较高的升温速度易形成为裂纹而呈现弱界面结合.同时,随着烧结温度的升高,界面区中有石墨微晶生成,但呈现出湍层结构.较高的烧结温度有助于脱除N、O、Na等元素,并有利于形成C-C结构.","authors":[{"authorName":"孙德林","id":"e0067e11-6e28-4a8e-9f7c-70fa7a77a0a7","originalAuthorName":"孙德林"},{"authorName":"余先纯","id":"a4b0cb9c-9868-4623-951d-d5c95f07a96a","originalAuthorName":"余先纯"},{"authorName":"","id":"ad665372-238a-42c1-9806-25cb69499fc8","originalAuthorName":"郝晓峰"},{"authorName":"陈新义","id":"7fb7759d-1ddc-4a56-ba67-57394a8b2bfe","originalAuthorName":"陈新义"},{"authorName":"刘明辉","id":"eedee106-008f-4a14-a11d-2da84c4f2740","originalAuthorName":"刘明辉"}],"doi":"","fpage":"18","id":"1c7d8156-36bb-48ef-8848-2c38f59df679","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"1a05d7c1-38c0-4276-bd34-cf2eeca4f689","keyword":"碳纤维/木材陶瓷","originalKeyword":"碳纤维/木材陶瓷"},{"id":"79bbe3db-e87f-4123-a707-0edb808baf76","keyword":"烧结温度","originalKeyword":"烧结温度"},{"id":"997e45e9-9aea-4d83-8b30-03b59342816c","keyword":"界面结构","originalKeyword":"界面结构"},{"id":"74052e20-f65f-43c6-a58e-8b169f23e15e","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"jsrclxb201611004","title":"烧结温度对碳纤维/层状木材陶瓷界面结构的影响","volume":"37","year":"2016"},{"abstractinfo":"为了提升木材陶瓷的力学性能,用液化木材、炭粉和碳纤维等制备增强型层状结构木材陶瓷.探讨了烧结温度、液化木材用量等因素对其结构和力学性能的影响.结果表明,增强型层状木材陶瓷层状结构清晰,摩擦性能良好,且在微观上部分保持了木材天然的孔隙结构特征.同时,增强碳纤维和层状结构的运用能够获得较高强度与较好韧性.当烧结温度为1100℃、炭粉与液化木材质量比为1:0.75、胶合压力为3 MPa时,其抗弯强度、弹性模量、断裂韧性分别达到了53.90 MPa、2.58 GPa和1.69 MPa·m1/2,与普通木材陶瓷相比均有大幅度提高.","authors":[{"authorName":"余先纯","id":"db757f63-322f-4629-a47b-afb1b35110b9","originalAuthorName":"余先纯"},{"authorName":"任思静","id":"59b778ba-332f-439b-abd1-4e0f61e19d13","originalAuthorName":"任思静"},{"authorName":"","id":"e5de6bc0-dc0e-4394-b42a-3fda727fa1b0","originalAuthorName":"郝晓峰"},{"authorName":"陈新义","id":"acab171c-d67a-4741-8196-3681b7b48cad","originalAuthorName":"陈新义"},{"authorName":"刘明辉","id":"e84073cb-1748-4b9b-9392-28ce4e01363c","originalAuthorName":"刘明辉"},{"authorName":"孙德林","id":"136ce180-90a8-41b8-99aa-d45cc23b33a5","originalAuthorName":"孙德林"}],"doi":"","fpage":"1","id":"dd5f2abf-767b-4e38-922d-bafb0599b158","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"9e18e0fd-dbf0-4694-99ae-eb0c60d47ab8","keyword":"液化木材","originalKeyword":"液化木材"},{"id":"398ada6e-bb57-464d-9460-d5d9038cd688","keyword":"木材陶瓷","originalKeyword":"木材陶瓷"},{"id":"d7b7e82e-4acf-4024-8336-b1f1af89df6a","keyword":"层状结构","originalKeyword":"层状结构"},{"id":"8e637171-f8bc-47bf-a92d-15450d7a72dd","keyword":"碳纤维增强","originalKeyword":"碳纤维增强"}],"language":"zh","publisherId":"jsrclxb201601001","title":"碳纤维/层状木材陶瓷的制备与力学性能","volume":"37","year":"2016"},{"abstractinfo":"以松木粉、液化木材和ZnCl2为原料制备木材陶瓷,采用低温氮吸附法和扫描电镜(SEM)检测与评价烧结工艺对木材陶瓷孔隙结构的影响.SEM观测显示:木材陶瓷中多种孔隙结构并存,且木材的天然结构得以部分保存.低温氮吸附法检测表明:孔隙结构为H3型,以孔径为2.3 ~4.5 nm左右的介孔为主.烧结温度、升温速度和保温烧结时间等因素对孔隙结构有较大的影响.其比表面积随着烧结温度的升高而增加,但在高温区减小,而平均孔径则随烧结温度的升高表现为先减小后增加的趋势.1300℃、保温烧结30 min木材陶瓷的比表面积和平均孔径分别为364.2 m2·g-1和2.473 nm.","authors":[{"authorName":"余先纯","id":"b03367cc-6331-440b-ba88-e48c1797adef","originalAuthorName":"余先纯"},{"authorName":"孙德林","id":"4695fb75-396c-4868-87ed-be9c4dafdd42","originalAuthorName":"孙德林"},{"authorName":"","id":"e63e7cc8-21f5-4df1-9d1d-aa4e5f292453","originalAuthorName":"郝晓峰"},{"authorName":"陈新义","id":"55652899-e4f1-4e20-afbe-1c4cf543dd3f","originalAuthorName":"陈新义"},{"authorName":"丁山","id":"f5d9af56-b0c8-40d0-957b-85c3dbf2f8a7","originalAuthorName":"丁山"}],"doi":"10.13289/j.issn.1009-6264.2017-0054","fpage":"10","id":"617ab515-16ec-49c1-bae2-b4596c395c92","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"2db779fd-5c79-4a14-ace2-d9a7eff6e0b2","keyword":"木材陶瓷","originalKeyword":"木材陶瓷"},{"id":"d49cb29b-d6da-41b4-bdd3-aa2fd9fba59b","keyword":"烧结工艺","originalKeyword":"烧结工艺"},{"id":"2547ba70-fd2f-495e-8592-7b0126f86746","keyword":"孔隙结构","originalKeyword":"孔隙结构"},{"id":"93fc70ad-03bc-4620-9bf4-638a721e2c00","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"jsrclxb201706002","title":"烧结工艺对木材陶瓷孔隙结构的影响","volume":"38","year":"2017"},{"abstractinfo":"为了研究木材陶瓷的断裂行为及其影响因素,以山毛榉薄木和液化木材为基材制备叠层结构木材陶瓷,分析了基本结构、烧结温度、液化木材用量和胶合压力等工艺因素对其断裂行为的影响.结果表明:叠层结构能够使断裂裂纹偏转,有利于改善木材陶瓷的断裂行为.当烧结温度、液化木材用量和胶合压力分别为1200℃、80%和7 MPa时,制备的木材陶瓷呈现出较完整的叠层结构,并可获得相对较好的断裂韧性,其值是无叠层结构的2~3倍.","authors":[{"authorName":"孙德林","id":"1add71c6-181f-4f09-8aac-e0a515e08e89","originalAuthorName":"孙德林"},{"authorName":"","id":"14cbabd6-cd30-40a0-a2f6-996f9c882c99","originalAuthorName":"郝晓峰"},{"authorName":"陈新义","id":"cc669c72-0f5d-43a9-8d47-9e1df4e7bb11","originalAuthorName":"陈新义"}],"doi":"","fpage":"11","id":"e478f716-52b9-43ef-9a31-d9bd10f52451","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"58c1fe2e-d539-474d-91a2-7bab03aa07ec","keyword":"木材陶瓷","originalKeyword":"木材陶瓷"},{"id":"01ef9d93-0f01-4182-8937-74151847ed18","keyword":"叠层结构","originalKeyword":"叠层结构"},{"id":"51094fe6-a8d1-4da4-b324-7f5962c3acf9","keyword":"断裂行为","originalKeyword":"断裂行为"},{"id":"576e12d9-12ec-4f4a-aac6-7cbf40ed2e26","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"jsrclxb201501003","title":"叠层结构木材陶瓷的断裂行为及影响因素","volume":"36","year":"2015"},{"abstractinfo":"采空区是引起地表塌陷、恶化矿山开采条件的严重安全隐患,对不明采空区的精细探测技术、治理技术及安全监测装备与预警技术的开发研究,是复杂条件下矿山安全高效开采迫切需要解决的重大课题。以西庄矿为工程背景,介绍了采空区地表GPS监测系统及沉降监测方案;通过在地表合理设置若干个监测点,利用所安装的监测系统来监视裂缝区域和地表沉降区域的动态演变过程,并将监测信息发送到监控室;通过布点监测,及时预测地压来临时间,为预警决策和矿山及时撤出处于危险区人员提供依据,实现矿山安全生产,具有一定的推广意义。","authors":[{"authorName":"董华兴","id":"fd20910e-c537-4c5f-9e59-a76241291b1d","originalAuthorName":"董华兴"},{"authorName":"李淑霞","id":"da23aa00-033f-4988-a738-0a35fa8d0a90","originalAuthorName":"李淑霞"},{"authorName":"孙帅","id":"1590e872-a796-4912-8c82-c863ac73fe84","originalAuthorName":"孙帅"}],"doi":"10.11792/hj20130711","fpage":"39","id":"df9f62ba-4050-485b-8ed3-7f67ab74a239","issue":"7","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"8ffd5a76-3dd6-4e6d-80b7-3c742050ff51","keyword":"采空区","originalKeyword":"采空区"},{"id":"06f9df65-8fc2-4bbd-8e29-81b642364f08","keyword":"地表塌陷","originalKeyword":"地表塌陷"},{"id":"ea01b2b1-931e-4dbd-a2b9-ee5f0b31ed40","keyword":"GPS监测","originalKeyword":"GPS监测"},{"id":"76f0523d-d350-44de-8fc1-a6927974073e","keyword":"观测点","originalKeyword":"观测点"},{"id":"4119d399-551b-49bf-8c70-39e6ff0fa946","keyword":"基准点","originalKeyword":"基准点"},{"id":"79dcdd63-b629-4598-b7ab-fa2f57da83fd","keyword":"预警","originalKeyword":"预警"}],"language":"zh","publisherId":"huangj201307014","title":"GPS 监测系统在西庄矿采空区治理中的应用","volume":"","year":"2013"},{"abstractinfo":"本刊2012年第五期第801页刊登了熊英等作者的论文,这是本刊编辑部自创刊以来收到的第一篇这样的论文,该文对本刊在材料科学期刊中所处的地位及面临问题、发展方向作出如此客观、中肯的评价与指引,均使编辑部成员十分感动。今年恰是本刊创刊30周年纪念,谨以此《编后记》供奉广大读者,","authors":[{"authorName":"无","id":"6eb4c714-a474-4cd0-b393-f0306b138318","originalAuthorName":"无"}],"doi":"","fpage":"714","id":"70565a37-1b6d-4b46-9b09-eb71030a22e8","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"b4b988f9-967f-4530-817f-d29f1623cfa2","keyword":"科学评价","originalKeyword":"科学评价"},{"id":"614f8cc5-6336-4065-b303-26b67f81d1be","keyword":"论文","originalKeyword":"论文"},{"id":"bf3cdaa0-4927-4d1a-a122-779ead854c34","keyword":"作者","originalKeyword":"作者"},{"id":"54d5797b-6f47-4f76-9527-3b32105f0299","keyword":"务实","originalKeyword":"务实"},{"id":"2124d564-90da-4a58-85da-22654e0d5dd2","keyword":"科学期刊","originalKeyword":"科学期刊"},{"id":"1dee1687-be42-4d28-aed7-6cd29a5c6883","keyword":"编辑部","originalKeyword":"编辑部"},{"id":"b28e651a-8495-4eba-87c6-79d47b81d924","keyword":"创刊","originalKeyword":"创刊"}],"language":"zh","publisherId":"clkxygc201205014","title":"科学评价,务实求真——熊英等作者的论文编后记","volume":"30","year":"2012"},{"abstractinfo":"用受迫振动法测量了夹角为60°和129.5°的铝双晶的内耗,都观测到一个温度内耗,峰巅温度是200℃左右(频率1Hz)激活能为0.88eV对于这个内耗的机制做了初步解释。","authors":[{"authorName":"关幸生","id":"8e7fa0a7-4b2b-43eb-ab0e-385b95cbfd10","originalAuthorName":"关幸生"},{"authorName":"葛庭燧","id":"67b972cc-f4c0-4797-9aed-85c45cb1ce80","originalAuthorName":"葛庭燧"}],"categoryName":"|","doi":"","fpage":"1","id":"2aff307d-21f5-4a68-a5ac-0b1cd08864dc","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"ed61f5ab-f338-42d9-b668-0b6a379c39fe","keyword":"铝双晶","originalKeyword":"铝双晶"},{"id":"36aafee6-63d2-4133-8924-6e4a2ec321a9","keyword":"grain boundary internal friction peak","originalKeyword":"grain boundary internal friction peak"},{"id":"10d06012-bca3-4f68-aa60-0d4f370bb37a","keyword":"activation enegry","originalKeyword":"activation enegry"}],"language":"zh","publisherId":"0412-1961_1993_8_5","title":"铝双晶晶界的内耗","volume":"29","year":"1993"},{"abstractinfo":"采用不完全相变内耗(IF)测量法, 在Cu-Al-Ni-Mn-Ti合金马氏体相变中获得双内耗, 即低温内耗和高温内耗. 高温内耗主要出现在频率小于0.050 Hz的范围, 其位置对应于相对动力学模量的拐点位置; 高温内耗峰峰值在测量频率范围内与振动频率成反比关系, 满足经典的Belko和Delorme模型; 高温内耗具有明显的反常应变振幅效应, 其峰值随变温速率的增大而增大, 这些都说明高温内耗的形成与相转变量有关.","authors":[{"authorName":"戴鹏","id":"a2f5e766-4187-4d3e-840f-f8a7ab3aabb2","originalAuthorName":"戴鹏"},{"authorName":"吴明在","id":"ce4a423d-0344-437f-b781-e30753e4e0bf","originalAuthorName":"吴明在"},{"authorName":"宫晨利","id":"1a5ce7ae-c4a3-47f5-bc05-322499b45b99","originalAuthorName":"宫晨利"}],"doi":"10.3969/j.issn.0258-7076.2009.06.006","fpage":"795","id":"b04ec2cc-59d3-401d-a6cb-cc56b054c880","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"e18e678d-f0ca-4f50-a148-2b6eb16937d9","keyword":"热弹性马氏体","originalKeyword":"热弹性马氏体"},{"id":"6757b8da-6539-4a04-8b55-003e8e583328","keyword":"内耗","originalKeyword":"内耗"},{"id":"c2ef60e4-a840-4557-a094-76bec2c54d9f","keyword":"高温内耗","originalKeyword":"高温内耗峰"}],"language":"zh","publisherId":"xyjs200906006","title":"热弹性马氏体相变中的高温内耗","volume":"33","year":"2009"}],"totalpage":650,"totalrecord":6497}