{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"目的:研究表面结构与化学成分对结霜性能的影响。方法以具有不同结构参数的多孔阳极氧化铝表面为模板,以高密度聚乙烯为压印热塑材料,采用模板热压法在常压下制备柱状微结构表面。分析表面形貌,测试接触角,通过结霜实验研究其结霜性能。结果柱状微结构表面经化学修饰后,获得超疏水效果。结霜过程实验显示,制备的超疏水表面初始结霜时间更晚,结霜速率更慢。结论通过改变表面结构与表面化学成分均能对表面结霜性能产生直接影响,修饰后的柱状结构表面具有较好的抑霜效果。","authors":[{"authorName":"丁云飞","id":"8bd082e4-edd5-40ce-a7be-7b5af876a75d","originalAuthorName":"丁云飞"},{"authorName":"伍彬","id":"15540ba1-581d-4c33-b9ca-a8f1d3caa036","originalAuthorName":"伍彬"},{"authorName":"吴会军","id":"66d72815-33a5-4bf3-94fc-84a0f64cba53","originalAuthorName":"吴会军"}],"doi":"","fpage":"106","id":"f444208a-1ce1-440d-a93b-ddf944652ced","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"8b226a71-ef42-4e11-9155-57acb706c075","keyword":"模板热压法","originalKeyword":"模板热压法"},{"id":"2b14354e-b2ab-4065-a83b-5ef54cde1908","keyword":"多孔阳极氧化铝","originalKeyword":"多孔阳极氧化铝"},{"id":"fe9c06e9-0bf2-4d2e-8ac5-c9cdf99ecb0a","keyword":"柱状微结构","originalKeyword":"柱状微结构"},{"id":"e5355904-2141-41e5-99bc-1a7cb5d546e4","keyword":"超疏水表面","originalKeyword":"超疏水表面"},{"id":"2773eadb-c9c3-4aae-ad9a-a7c3eb8bfc2a","keyword":"结霜","originalKeyword":"结霜"}],"language":"zh","publisherId":"bmjs201501020","title":"柱状微结构超疏水表面制备及其结霜性能研究","volume":"","year":"2015"},{"abstractinfo":"对电子芯片在FC-72工质中浸没喷射沸腾换热进行了实验研究.通过干腐蚀技术在硅片表面加工出交错排列的柱状微结构(30 μm×60 μm,50 μm×60μm,50 μm×120 μm,30 μm×120 μm,宽×高),硅片尺寸为10 mm×10mm×0.5 mm,过冷度为35 K,喷射速度Vj分别为0.5,1,1.5 m/s.喷嘴数目分别为1,4和9,直径分别为3,1.5和1mm.喷嘴出口到芯片表面的距离分别为3,6和9 mm.实验表明,交错排列柱状微结构的换热效果要好于光滑芯片,临界热流密度随着喷射速度的增加而增加.在雷诺数及其他工况相同的情况下,不同喷嘴数目对换热的影响不同,当n=4时,所有芯片的壁面温度最低,临界热流密度最高,其次是n=9,换热效果最差的是n=1.在雷诺数及其他工况相同的情况下,所有芯片的换热性能在喷射距离s=3 mm时最好,其壁温最低,临界热流密度最高,随着喷射距离的增加,其壁面温度逐渐升高,临界热流密度逐渐减小.","authors":[{"authorName":"张永海","id":"8bc079c1-ada4-4d76-b62c-cf1f1cdec1c7","originalAuthorName":"张永海"},{"authorName":"魏进家","id":"11cff951-2401-4795-987c-2f5ba179abad","originalAuthorName":"魏进家"},{"authorName":"孔新","id":"03375ae6-1061-4039-b37d-5b582bf677f5","originalAuthorName":"孔新"}],"doi":"","fpage":"1476","id":"34c3f0f3-2e73-4dcf-8643-14746037a4d6","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ff934dac-b2c1-47cf-bf1f-20a293a5a001","keyword":"射流冲击","originalKeyword":"射流冲击"},{"id":"15702767-ef7c-4dea-bbee-607f1bb4207e","keyword":"沸腾","originalKeyword":"沸腾"},{"id":"067d3922-baa7-4d7a-9836-36003cb90ac0","keyword":"强化换热","originalKeyword":"强化换热"},{"id":"cb652bbc-8024-49cd-8afc-0fe1dfcb0660","keyword":"交错排列","originalKeyword":"交错排列"},{"id":"36ae8dec-6cb0-4335-ba6e-0b39e78d5c23","keyword":"柱状微结构","originalKeyword":"柱状微结构"}],"language":"zh","publisherId":"gcrwlxb201507019","title":"交错排列柱状微结构射流冲击强化换热实验研究","volume":"36","year":"2015"},{"abstractinfo":"对电子芯片在FC-72工质中浸没喷射沸腾换热进行了实验研究.通过干腐蚀技术在硅片表面加工出50 μm×60μm,50 μm×120μm(宽×高)的柱状微结构,硅片尺寸为10 mm× 10 mm×0.5 mm,过冷度分别为25、35 K,喷射速度Vj分别为0.5、1.0、1.5 m/s.实验表明,临界热流密度随着喷射速度和过冷度的增加而增加,增加过冷度和喷射速度可减小气泡脱离时的尺寸,增加气泡脱离频率,因此提高了临界热流密度并且降低了壁面温度.此外,在单相对流换热区对流换热占据主导地位,热流密度随着壁面过热度线性增加;在核态沸腾换热区,对流换热与核态沸腾换热同时影响着换热过程.当喷射速度较小时,核态沸腾区曲线的斜率比单相对流区曲线的斜率大得多,显示出浸没喷射沸腾的优良换热性能.","authors":[{"authorName":"张永海","id":"6153ff7c-ac29-49a1-be22-32a4043739cb","originalAuthorName":"张永海"},{"authorName":"魏进家","id":"968956c8-f5e7-4752-bdbe-79bdb43ab210","originalAuthorName":"魏进家"},{"authorName":"孔新","id":"56a9e00f-ab54-4814-8300-f77d148b714e","originalAuthorName":"孔新"}],"doi":"","fpage":"93","id":"a45abbed-71c5-42c6-867e-22fa380d9956","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c5a479b3-747b-4c27-b85b-2ca9d40ca336","keyword":"射流冲击","originalKeyword":"射流冲击"},{"id":"861d2ce7-9a01-4095-be07-557b0d59680a","keyword":"沸腾","originalKeyword":"沸腾"},{"id":"371e5216-b81d-4886-b8cc-e88555b22626","keyword":"强化换热","originalKeyword":"强化换热"},{"id":"a98beee8-c1b2-4828-9c5b-b4fe0294ecf3","keyword":"柱状微结构","originalKeyword":"柱状微结构"}],"language":"zh","publisherId":"gcrwlxb201501020","title":"柱状微结构浸没喷射沸腾强化换热实验研究","volume":"36","year":"2015"},{"abstractinfo":"基于四参数随机生长方法和热阻网络方法开发了涂层微结构构建和隔热性能分析软件,构建了各向异性孔隙结构的柱状涂层微结构,着重研究了柱状孔隙大小、数量和细长化对柱状涂层有效导热系数和隔热性能的影响.结果表明:提高涂层的孔隙率是增强涂层隔热性能的有效途径;孔隙率一定时,随着柱状孔隙直径减小,其隔热性能增强,并且结构更加稳定;孔隙率一定时,随着柱状孔隙细长化,其隔热性能在一定程度上会有所减弱,但其稳态导热温度分布更加均匀,结构更加稳定.","aut{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"目的:研究表面结构与化学成分对结霜性能的影响。方法以具有不同结构参数的多孔阳极氧化铝表面为模板,以高密度聚乙烯为压印热塑材料,采用模板热压法在常压下制备柱状微结构表面。分析表面形貌,测试接触角,通过结霜实验研究其结霜性能。结果柱状微结构表面经化学修饰后,获得超疏水效果。结霜过程实验显示,制备的超疏水表面初始结霜时间更晚,结霜速率更慢。结论通过改变表面结构与表面化学成分均能对表面结霜性能产生直接影响,修饰后的柱状结构表面具有较好的抑霜效果。","authors":[{"authorName":"丁云飞","id":"8bd082e4-edd5-40ce-a7be-7b5af876a75d","originalAuthorName":"丁云飞"},{"authorName":"伍彬","id":"15540ba1-581d-4c33-b9ca-a8f1d3caa036","originalAuthorName":"伍彬"},{"authorName":"吴会军","id":"66d72815-33a5-4bf3-94fc-84a0f64cba53","originalAuthorName":"吴会军"}],"doi":"","fpage":"106","id":"f444208a-1ce1-440d-a93b-ddf944652ced","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"8b226a71-ef42-4e11-9155-57acb706c075","keyword":"模板热压法","originalKeyword":"模板热压法"},{"id":"2b14354e-b2ab-4065-a83b-5ef54cde1908","keyword":"多孔阳极氧化铝","originalKeyword":"多孔阳极氧化铝"},{"id":"fe9c06e9-0bf2-4d2e-8ac5-c9cdf99ecb0a","keyword":"柱状微结构","originalKeyword":"柱状微结构"},{"id":"e5355904-2141-41e5-99bc-1a7cb5d546e4","keyword":"超疏水表面","originalKeyword":"超疏水表面"},{"id":"2773eadb-c9c3-4aae-ad9a-a7c3eb8bfc2a","keyword":"结霜","originalKeyword":"结霜"}],"language":"zh","publisherId":"bmjs201501020","title":"柱状微结构超疏水表面制备及其结霜性能研究","volume":"","year":"2015"},{"abstractinfo":"对电子芯片在FC-72工质中浸没喷射沸腾换热进行了实验研究.通过干腐蚀技术在硅片表面加工出交错排列的柱状微结构(30 μm×60 μm,50 μm×60μm,50 μm×120 μm,30 μm×120 μm,宽×高),硅片尺寸为10 mm×10mm×0.5 mm,过冷度为35 K,喷射速度Vj分别为0.5,1,1.5 m/s.喷嘴数目分别为1,4和9,直径分别为3,1.5和1mm.喷嘴出口到芯片表面的距离分别为3,6和9 mm.实验表明,交错排列柱状微结构的换热效果要好于光滑芯片,临界热流密度随着喷射速度的增加而增加.在雷诺数及其他工况相同的情况下,不同喷嘴数目对换热的影响不同,当n=4时,所有芯片的壁面温度最低,临界热流密度最高,其次是n=9,换热效果最差的是n=1.在雷诺数及其他工况相同的情况下,所有芯片的换热性能在喷射距离s=3 mm时最好,其壁温最低,临界热流密度最高,随着喷射距离的增加,其壁面温度逐渐升高,临界热流密度逐渐减小.","authors":[{"authorName":"张永海","id":"8bc079c1-ada4-4d76-b62c-cf1f1cdec1c7","originalAuthorName":"张永海"},{"authorName":"魏进家","id":"11cff951-2401-4795-987c-2f5ba179abad","originalAuthorName":"魏进家"},{"authorName":"孔新","id":"03375ae6-1061-4039-b37d-5b582bf677f5","originalAuthorName":"孔新"}],"doi":"","fpage":"1476","id":"34c3f0f3-2e73-4dcf-8643-14746037a4d6","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ff934dac-b2c1-47cf-bf1f-20a293a5a001","keyword":"射流冲击","originalKeyword":"射流冲击"},{"id":"15702767-ef7c-4dea-bbee-607f1bb4207e","keyword":"沸腾","originalKeyword":"沸腾"},{"id":"067d3922-baa7-4d7a-9836-36003cb90ac0","keyword":"强化换热","originalKeyword":"强化换热"},{"id":"cb652bbc-8024-49cd-8afc-0fe1dfcb0660","keyword":"交错排列","originalKeyword":"交错排列"},{"id":"36ae8dec-6cb0-4335-ba6e-0b39e78d5c23","keyword":"柱状微结构","originalKeyword":"柱状微结构"}],"language":"zh","publisherId":"gcrwlxb201507019","title":"交错排列柱状微结构射流冲击强化换热实验研究","volume":"36","year":"2015"},{"abstractinfo":"对电子芯片在FC-72工质中浸没喷射沸腾换热进行了实验研究.通过干腐蚀技术在硅片表面加工出50 μm×60μm,50 μm×120μm(宽×高)的柱状微结构,硅片尺寸为10 mm× 10 mm×0.5 mm,过冷度分别为25、35 K,喷射速度Vj分别为0.5、1.0、1.5 m/s.实验表明,临界热流密度随着喷射速度和过冷度的增加而增加,增加过冷度和喷射速度可减小气泡脱离时的尺寸,增加气泡脱离频率,因此提高了临界热流密度并且降低了壁面温度.此外,在单相对流换热区对流换热占据主导地位,热流密度随着壁面过热度线性增加;在核态沸腾换热区,对流换热与核态沸腾换热同时影响着换热过程.当喷射速度较小时,核态沸腾区曲线的斜率比单相对流区曲线的斜率大得多,显示出浸没喷射沸腾的优良换热性能.","authors":[{"authorName":"张永海","id":"6153ff7c-ac29-49a1-be22-32a4043739cb","originalAuthorName":"张永海"},{"authorName":"魏进家","id":"968956c8-f5e7-4752-bdbe-79bdb43ab210","originalAuthorName":"魏进家"},{"authorName":"孔新","id":"56a9e00f-ab54-4814-8300-f77d148b714e","originalAuthorName":"孔新"}],"doi":"","fpage":"93","id":"a45abbed-71c5-42c6-867e-22fa380d9956","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c5a479b3-747b-4c27-b85b-2ca9d40ca336","keyword":"射流冲击","originalKeyword":"射流冲击"},{"id":"861d2ce7-9a01-4095-be07-557b0d59680a","keyword":"沸腾","originalKeyword":"沸腾"},{"id":"371e5216-b81d-4886-b8cc-e88555b22626","keyword":"强化换热","originalKeyword":"强化换热"},{"id":"a98beee8-c1b2-4828-9c5b-b4fe0294ecf3","keyword":"柱状微结构","originalKeyword":"柱状微结构"}],"language":"zh","publisherId":"gcrwlxb201501020","title":"柱状微结构浸没喷射沸腾强化换热实验研究","volume":"36","year":"2015"},{"abstractinfo":"基于四参数随机生长方法和热阻网络方法开发了涂层微结构构建和隔热性能分析软件,构建了各向异性孔隙结构的柱状涂层微结构,着重研究了柱状孔隙大小、数量和细长化对柱状涂层有效导热系数和隔热性能的影响.结果表明:提高涂层的孔隙率是增强涂层隔热性能的有效途径;孔隙率一定时,随着柱状孔隙直径减小,其隔热性能增强,并且结构更加稳定;孔隙率一定时,随着柱状孔隙细长化,其隔热性能在一定程度上会有所减弱,但其稳态导热温度分布更加均匀,结构更加稳定.","authors":[{"authorName":"凌锡祥","id":"d08f1329-82a0-4394-94b8-302eee4eda36","originalAuthorName":"凌锡祥"},{"authorName":"王玉璋","id":"57c9e070-25f8-4188-88a9-eb682ef145d2","originalAuthorName":"王玉璋"},{"authorName":"王星","id":"7ec11a5c-35f3-4fc2-9cdd-cad018e9903b","originalAuthorName":"王星"}],"doi":"10.11868/j.issn.1005-5053.2014.5.011","fpage":"69","id":"d4e7b047-a0e0-4650-8604-cee70a9a7b20","issue":"5","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"dd022e72-b307-419c-b953-63f8ce519234","keyword":"热障涂层","originalKeyword":"热障涂层"},{"id":"d6701d59-a676-476d-b19b-d45e2ddfe1a2","keyword":"柱状微结构","originalKeyword":"柱状微结构"},{"id":"ad053446-7efc-4f3a-9f4a-3271bddc4222","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"f945dfbb-bab4-4263-939b-b7e4e37ee7da","keyword":"有效导热系数","originalKeyword":"有效导热系数"},{"id":"88002777-911e-4ef1-bad3-f068795b99ba","keyword":"隔热性能","originalKeyword":"隔热性能"}],"language":"zh","publisherId":"hkclxb201405011","title":"基于柱状结构的热障涂层隔热性能数值研究","volume":"34","year":"2014"},{"abstractinfo":"采用直流磁控溅射法制备了非晶态TbFe磁致伸缩薄膜,通过基片的倾斜安装研究了基片倾斜角度对TbFe薄膜磁致伸缩性能的影响.结果表明:随着基片倾斜角度的增大TbFe薄膜的磁致伸缩系数增大,在外加磁场110kA·m-1下基片倾斜角度为60°时薄膜磁致伸缩系数达到最大值1.02×10-4,并且随着基片倾斜角度的增大TbFe薄膜的易磁化方向由垂直膜面方向逐渐转向平行膜面方向.这是由于倾斜基片溅射形成的倾斜的薄膜柱状微结构产生的形状各向异性引起的.","authors":[{"authorName":"张金平","id":"0967f748-9ebf-470f-a7d9-487861cdbf5a","originalAuthorName":"张金平"},{"authorName":"蒋洪川","id":"62f05d20-98f9-4786-9a39-ba2c0abf4ee5","originalAuthorName":"蒋洪川"},{"authorName":"张万里","id":"9c36e1db-2adb-4842-9a05-a8f36189df80","originalAuthorName":"张万里"},{"authorName":"彭斌","id":"78e12e45-af05-4dc7-91f8-f6980fdec334","originalAuthorName":"彭斌"},{"authorName":"张文旭","id":"7202a1ee-4ab7-4ac7-b074-04edcb29aa34","originalAuthorName":"张文旭"},{"authorName":"杨仕清","id":"3036696c-b4a3-4e45-bc19-cfbeb7a01944","originalAuthorName":"杨仕清"}],"doi":"","fpage":"27","id":"7ac4bc01-50b7-4c4e-bc8d-52ace765eb4b","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3cdd246f-1a28-4b30-82e4-ecef45c9733c","keyword":"直流磁控{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对60Si2Mn弹簧钢进行了优化余热淬火:920℃加热奥氏体化,保温20 min,随后冷至860℃出炉进行油淬,400℃回火1.5h,空冷.再对60Si2Mn弹簧钢进行了强力喷丸及低温时效处理.结果表明,60Si2Mn弹簧钢经此复合优化处理工艺后残余压应力松弛平缓,其屈强比和疲劳强度显著提高,综合力学性能也得到明显改善,完全能满足汽车板弹簧使用要求.","authors":[{"authorName":"刘安民","id":"3c85a7e2-97fd-4467-a29f-4c9642b077b4","originalAuthorName":"刘安民"},{"authorName":"钱书琨","id":"b2310d25-80a1-4653-9e08-a31bfa59c2e2","originalAuthorName":"钱书琨"},{"authorName":"汪新衡","id":"39fdf7ea-da8d-497d-adf7-cc401e399f4b","originalAuthorName":"汪新衡"},{"authorName":"朱航生","id":"84360cde-aa20-4459-ac22-4e05a223fed5","originalAuthorName":"朱航生"}],"doi":"","fpage":"336","id":"88d3dd59-7e9c-4a65-b819-2d15360dd46d","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"19b0cfd8-e7e9-4f99-98fe-fe775d3290ba","keyword":"60Si2Mn弹簧钢","originalKeyword":"60Si2Mn弹簧钢"},{"id":"d9755448-ac38-4b85-ae21-453798c2e559","keyword":"余热淬火","originalKeyword":"余热淬火"},{"id":"db2c2b3b-a983-442e-ae4b-243196a53feb","keyword":"强力喷丸","originalKeyword":"强力喷丸"},{"id":"0fb9033a-f871-4466-95c6-0416a4ad2115","keyword":"低温时效","originalKeyword":"低温时效"},{"id":"a8d5f188-38d7-4327-bd3e-3a8f5e0e5b5b","keyword":"残余压应力","originalKeyword":"残余压应力"},{"id":"602e5535-68ef-47fd-815c-c3b07b5cb4f1","keyword":"屈强比","originalKeyword":"屈强比"},{"id":"351f89f3-8637-4b1f-bc0f-eab3d7e982d3","keyword":"疲劳强度","originalKeyword":"疲劳强度"}],"language":"zh","publisherId":"cldb2013z2092","title":"60Si2Mn弹簧钢复合优化处理工艺研究","volume":"27","year":"2013"},{"abstractinfo":"为进一步掌握在线余热淬火处理对钢轨组织性能的影响关系和机理,采用扫描电镜对热轧态钢轨和在线余热淬火处理后的钢轨进行了全断面的组织观察,利用维氏硬度仪和拉伸试验机对比分析了在线余热淬火对钢轨力学性能的影响。结果表明,在线余热淬火和热轧态钢轨全断面的组织全部为片层状珠光体组织,但淬火轨珠光体片间距明显较小,热轧态钢轨珠光体片间距为0.113~0.284μm,淬火轨片间距为0.076~0.148μm。热轧态钢轨全断面显微硬度相差不大,在线余热淬火钢轨显微硬度普遍较热轧态钢轨高。在线余热淬火可以有效提高U75V钢轨性能,热处理后钢轨抗拉强度和伸长率分别较热轧态提高16.6%和20%,有效改善了钢轨的使用性能。","authors":[{"authorName":"李波","id":"48c6c2a1-c14d-4b50-9140-ba0414b0a9cd","originalAuthorName":"李波"},{"authorName":"朱国明","id":"aebc703d-e9fb-4a3f-b4d8-3b9e870fd1f8","originalAuthorName":"朱国明"},{"authorName":"陶功明","id":"0d10fbfd-552c-4b94-8062-c747f9ff1344","originalAuthorName":"陶功明"},{"authorName":"康永林","id":"e19fdb36-5db9-462a-94e0-7347730a7748","originalAuthorName":"康永林"}],"doi":"","fpage":"101","id":"7bea8419-79fd-4da9-9f71-9bfe4f79cc6e","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"002c5077-b6c7-4d8f-b17c-b0ded005bb8a","keyword":"在线余热淬火","originalKeyword":"在线余热淬火"},{"id":"76f13dd3-3a56-440e-8106-ff6359526a3b","keyword":"珠光体片层间距","originalKeyword":"珠光体片层间距"},{"id":"0d9735a6-7e83-4036-8dc6-02e48e43838f","keyword":"显微硬度","originalKeyword":"显微硬度"},{"id":"8b0428c4-be10-4ee7-974c-2d17c0afe0b4","keyword":"组织性能","originalKeyword":"组织性能"},{"id":"0f0577bd-a77b-407e-b98d-4f713f746f07","keyword":"U75V钢轨","originalKeyword":"U75V钢轨"}],"language":"zh","publisherId":"gt201407017","title":"在线余热淬火对U75V钢轨组织性能的影响","volume":"","year":"2014"},{"abstractinfo":"借助于ANSYS有限元分析软件,对U75V 60 kg/m重轨的在线余热淬火过程进行了有限元分析.综合重轨淬火强度、固态相变和轨头轨底不同控冷条件,模拟分析了9种重轨淬火温度场分布和变化规律.模拟结果表明:不同初始温度范围(880~ 900℃、900 ~ 920℃、920~940℃)的重轨适用的淬火方案不尽相同,按照选定的方案可使轨头平均冷速控制在2~5℃/s范围内,轨头轨底温差控制在50~100℃范围内.","authors":[{"authorName":"黄进科","id":"31eb7809-b861-4fd2-8472-c861d9e3d6f9","originalAuthorName":"黄进科"},{"authorName":"赵刚","id":"45ba4d2e-a770-44d6-bc91-2eb16f2d5fed","originalAuthorName":"赵刚"},{"authorName":"刘占龙","id":"636ff139-240b-4333-8821-fc1a78e3a1ab","originalAuthorName":"刘占龙"}],"doi":"","fpage":"73","id":"df100fdd-a684-43c2-9d73-7813bd170ae2","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"ddc7b613-095e-420b-82f4-85c6650c60ee","keyword":"重轨","originalKeyword":"重轨"},{"id":"52568b58-01df-43dc-a20e-b60babcd4afd","keyword":"控制冷却","originalKeyword":"控制冷却"},{"id":"a34e9411-34f2-483b-9050-51627c7b41ae","keyword":"在线余热淬火","originalKeyword":"在线余热淬火"},{"id":"ffc24b4f-1042-436e-a2bc-6369d26a2821","keyword":"温度场","originalKeyword":"温度场"},{"id":"e1738845-975f-422a-8630-5cf46ae285c6","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"shjs201605015","title":"U75V 60 kg/m重轨在线余热淬火温度场的数值模拟","volume":"38","year":"2016"},{"abstractinfo":"烧结余热发电技术是钢铁工业提高能源利用效率,实现可持续发展的重要途径之一。本文针对烧结余热资源品质较低、波动大等特点,提出并分析了余热回收与烟气处理、热源参数预测、余热回收工艺与废气温度调节、余热回收与烧结矿冷却制度优化、余热锅炉与发电系统选型优化等关键技术,认为:烧结余热回收应以冷却机废气余热回收为主,并重点保证系统稳定运行、提高余热回收效率,其中,热源参数预测技术是基础,热风循环技术是有效手段,余热锅炉和发电系统热力参数优化、参数匹配和动态特性优化是核心。","authors":[{"authorName":"胡长庆","id":"ee95caa7-8727-446b-a53f-3e15eaad5add","originalAuthorName":"胡长庆"}],"categoryName":"|","doi":"","fpage":"86","id":"2fde00a9-d07e-46d7-90f0-a89418691880","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"81ccc603-b92a-4344-b9fe-c2c83353ee60","keyword":"烧结;余热回收;关键技术;工艺优化","originalKeyword":"烧结;余热回收;关键技术;工艺优化"}],"language":"zh","publisherId":"0449-749X_2011_1_7","title":"烧结余热回收发电关键技术","volume":"46","year":"2011"},{"abstractinfo":"通过不同工艺下熔坨余热加热矿石量的计算,分析了电熔镁砂熔坨余热回收利用的可行性,表明电熔镁砂熔坨的余热有很大的回收利用价值。","authors":[{"authorName":"谢兴","id":"2ee093f1-06a9-4ad5-a71a-edabef27ca20","originalAuthorName":"谢兴"},{"authorName":"王承阳","id":"64569f7c-329a-41e8-9cc7-8f37d5cc84a6","originalAuthorName":"王承阳"}],"doi":"10.3969/j.issn.1001-1935.2014.03.019","fpage":"236","id":"3d53b2fb-8328-444d-9c3b-c8b0b40cec4d","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"18cbbcd7-ac10-4f46-b8b7-e5a154025372","keyword":"电熔镁砂","originalKeyword":"电熔镁砂"},{"id":"4291e5ad-e52c-46c9-a3ae-184196e82685","keyword":"熔坨","originalKeyword":"熔坨"},{"id":"d0556986-980b-4ed0-92e1-219944a47148","keyword":"余热","originalKeyword":"余热"},{"id":"85a932c0-0094-4400-a5a1-c99d27ebabb1","keyword":"回收利用","originalKeyword":"回收利用"}],"language":"zh","publisherId":"nhcl201403023","title":"电熔镁砂熔坨余热回收利用分析","volume":"","year":"2014"},{"abstractinfo":"烧结余热发电技术是钢铁工业提高能源利用效率,实现可持续发展的重要途径之一.针对烧结余热资源品质较低、波动大等特点,提出并分析了余热回收与烟气处理、热源参数预测、余热回收工艺与废气温度调节、废气循环与烧结矿冷却制度优化、余热锅炉与发电系统选型优化等关键技术,认为:烧结余热回收应以冷却机废气余热回收为主,并重点保证系统稳定运行,提高余热回收效率,其中,热源参数预测技术是基础,热风循环技术是有效手段,余热锅炉和发电系统热力参数优化、参数匹配和动态特性优化是核心.","authors":[{"authorName":"胡长庆","id":"dd002aec-d095-49c7-9aab-8b993fb62fa7","originalAuthorName":"胡长庆"},{"authorName":"师学峰","id":"884b1114-7731-4ec4-934e-ef4b61d9aaaf","originalAuthorName":"师学峰"},{"authorName":"张玉柱","id":"251850cc-93a1-4cf6-b252-7870cfd4c7db","originalAuthorName":"张玉柱"},{"authorName":"王子兵","id":"8659a589-45e9-4546-82e7-0d393bfa90bd","originalAuthorName":"王子兵"}],"doi":"","fpage":"86","id":"3a226649-6158-42a1-970f-f0a6e1c451d4","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"0bbde2a0-934b-4a31-80cb-99b4b23e4bae","keyword":"烧结","originalKeyword":"烧结"},{"id":"0cfbfb8b-2b73-4c3d-b933-8a6cfbbd84a9","keyword":"余热回收","originalKeyword":"余热回收"},{"id":"e2aef261-8591-4e2c-90c3-0f35a6e03de7","keyword":"关键技术","originalKeyword":"关键技术"},{"id":"5c3d078d-bfaa-42e1-9434-b1b89782b634","keyword":"工艺优化","originalKeyword":"工艺优化"}],"language":"zh","publisherId":"gt201101017","title":"烧结余热回收发电关键技术","volume":"46","year":"2011"},{"abstractinfo":"焦化产业作为高能耗、高污染产业,具有巨大的节能减排潜力。以焦炉物料平衡和热平衡计算为基础,计算焦炉的热效率,对焦炉的能耗进行分析。采用回收焦炭显热的干熄焦技术、荒煤气余热利用技术和以焦炉废气余热为热源的煤调湿技术,以充分利用焦炉支出热,达到节约能源、改善环境、提高经济效益、降低炼焦耗热量和提高焦炉生产能力的目的。","authors":[{"authorName":"张欣欣","id":"364d2037-8a20-484f-82ff-ecd51c790fe9","originalAuthorName":"张欣欣"},{"authorName":"张安强","id":"08a60dcd-30d6-4074-aec6-80cd76f4bab6","originalAuthorName":"张安强"},{"authorName":"冯妍卉","id":"f952388e-7a4e-4085-b88c-dfcc9f56a002","originalAuthorName":"冯妍卉"},{"authorName":"刘健","id":"7769d72d-179b-4b96-a463-c58fad0bd5bf","originalAuthorName":"刘健"},{"authorName":"张长青","id":"28904560-e04e-400d-bd95-5172f35ee8b3","originalAuthorName":"张长青"},{"authorName":"于振东","id":"2a33b018-36c9-48f7-ac44-753b2706aa76","originalAuthorName":"于振东"}],"doi":"","fpage":"1","id":"360d2b89-a6c9-486c-baf0-5a93578719a5","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"db8b3f12-a00b-464d-81c6-864b5d12d0bc","keyword":"焦炉","originalKeyword":"焦炉"},{"id":"e3dad61a-9e80-4c28-b799-326a99ef3817","keyword":"物料平衡","originalKeyword":"物料平衡"},{"id":"fd6d328f-afa1-4279-abf7-ec6f1c81fcb1","keyword":"热平衡","originalKeyword":"热平衡"},{"id":"f6f7fa54-8522-4d70-95a5-0d2fe1f9714b","keyword":"干熄焦","originalKeyword":"干熄焦"},{"id":"4a7b9d67-956a-401c-8116-09b99b5372c0","keyword":"荒煤气余热","originalKeyword":"荒煤气余热"},{"id":"e9b8b988-2f86-496f-9097-5924050b443a","keyword":"煤调湿","originalKeyword":"煤调湿"},{"id":"043967fa-0818-48de-a534-024cdc6df4af","keyword":"余热利用","originalKeyword":"余热利用"}],"language":"zh","publisherId":"gt201208001","title":"焦炉能耗分析与余热利用技术","volume":"47","year":"2012"},{"abstractinfo":"焦化产业作为高能耗、高污染产业,具有巨大的节能减排潜力。以焦炉物料平衡和热平衡计算为基础,计算焦炉的热效率,对焦炉的能耗进行分析。采用回收焦炭显热的干熄焦技术、荒煤气余热利用技术和以焦炉废气余热为热源的煤调湿技术,以充分利用焦炉支出热,达到节约能源、改善环境、提高经济效益、降低炼焦耗热量和提高焦炉生产能力的目的。","authors":[{"authorName":"张欣欣,张安强,冯妍卉,刘健,张长青,于振东","id":"6e745a12-12cc-46aa-b80c-b169a46a7f5b","originalAuthorName":"张欣欣,张安强,冯妍卉,刘健,张长青,于振东"}],"categoryName":"|","doi":"","fpage":"1","id":"7dd23a7a-0465-46a9-8c17-05d64c1fe79d","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"aa6bc252-f827-4a96-977a-45b9e8cb6169","keyword":"焦炉 ","originalKeyword":"焦炉 "},{"id":"39efea24-3da8-4e81-966d-d22e59051564","keyword":" material balance ","originalKeyword":" material balance "},{"id":"366fae22-f38c-44d3-a967-b7c3c59ba666","keyword":" heat balance ","originalKeyword":" heat balance "},{"id":"859d3e5e-c80d-43f1-b56d-193b4575ff85","keyword":" CDQ ","originalKeyword":" CDQ "},{"id":"23506560-45a5-43e8-b6ae-8495e6e4a152","keyword":" waste heat of raw gas ","originalKeyword":" waste heat of raw gas "},{"id":"b5b2b1b8-dd9c-4605-8ddc-2ba21aaf1830","keyword":" CMC ","originalKeyword":" CMC "},{"id":"8070922f-e94c-4280-9158-ca4223f37451","keyword":" heat recovery","originalKeyword":" heat recovery"}],"language":"zh","publisherId":"0449-749X_2012_8_8","title":"焦炉能耗分析与余热利用技术","volume":"47","year":"2012"},{"abstractinfo":"烧结余热罐式回收系统是针对于传统烧结余热回收系统的不足,借鉴于熄焦(CDQ)提出的一种变革性烧结余热回收系统,其具有余热回收率较高、漏风率低等优点.首先描述了罐式余热回收系统的基本工艺流程,进而阐述了罐式余热回收系统的基本特点,然后分析了罐式余热回收系统的关键技术问题,并给出了解决关键技术问题的基本途径.","authors":[{"authorName":"冯军胜","id":"9c2e928b-c7d2-4ba2-98dd-4e7b0b4d9da6","originalAuthorName":"冯军胜"},{"authorName":"董辉","id":"4df903da-267d-4cef-813d-9f8123b0c2b9","originalAuthorName":"董辉"},{"authorName":"王爱华","id":"439369f6-3e57-407f-8d3a-9c31d1063036","originalAuthorName":"王爱华"},{"authorName":"张琦","id":"98aa01c7-0bb9-478f-847e-2bfbb8f7a0d2","originalAuthorName":"张琦"},{"authorName":"蔡九菊","id":"045fa75c-8b1f-4576-8e89-02b08c262095","originalAuthorName":"蔡九菊"}],"doi":"10.13228/j.boyuan.issn1001-0963.20140127","fpage":"7","id":"64c34750-54cd-45f5-bff8-90d67b667877","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"0084e4a1-f824-482e-898e-6a90831c0e76","keyword":"烧结","originalKeyword":"烧结"},{"id":"ca87579d-9e68-407c-9cf5-cb22f11829ec","keyword":"余热","originalKeyword":"余热"},{"id":"dd5fdfcd-389c-4e7e-bd94-52b5cbdb29e5","keyword":"回收利用","originalKeyword":"回收利用"},{"id":"054e268a-91e7-45c3-b4e8-a8afa0b414d9","keyword":"竖罐","originalKeyword":"竖罐"},{"id":"13e18ec1-b774-446d-832d-06243604f3d0","keyword":"干熄焦","originalKeyword":"干熄焦"}],"language":"zh","publisherId":"gtyjxb201506002","title":"烧结余热罐式回收系统及其关键问题","volume":"27","year":"2015"},{"abstractinfo":"钢铁工业是能耗大户,采取措施充分提高企业的余热资源的回收利用效率具有重要的意义。研究了钢铁企业余热资源分布及回收利用方式,结合马钢在烧结余热回收、转炉汽化蒸汽发电等方面的实践经验,分析提出了钢铁企业发挥能源转换功能、高效利用余热资源技术的前期研究结果及推广前景。","authors":[{"authorName":"丁毅","id":"78648a10-66b4-4d8d-86d4-9471791c2612","originalAuthorName":"丁毅"},{"authorName":"史德明","id":"4af0936b-8e63-433e-a514-2d2bcd53631c","originalAuthorName":"史德明"}],"doi":"","fpage":"88","id":"1833cd8f-11a4-48f6-a68f-3a7becf9b1cb","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"7140c64d-f26b-4fe4-ae71-a99bd6b1712b","keyword":"余热资源","originalKeyword":"余热资源"},{"id":"c3f9a3f0-d8e8-48a8-883d-ce046d82dfb2","keyword":"高效利用","originalKeyword":"高效利用"},{"id":"45a1cb27-a7e9-4c1b-89ac-b5ca2a5676b0","keyword":"能源转换","originalKeyword":"能源转换"}],"language":"zh","publisherId":"gt201110020","title":"钢铁企业余热资源高效利用","volume":"46","year":"2011"}],"totalpage":248,"totalrecord":2473}