{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本实验同时研究了40Ar+209Bi反应中周边碰撞和中心碰撞两者产生的关联裂变碎片,以及其与α粒子的再关联.对裂交碎片质量分布和能量分布随热裂变核初始温度演化的系统分析,发现中心碰撞和周边碰撞所形成的热核存在着不同的裂变行为.","authors":[{"authorName":"邬恩九","id":"19d9753c-0843-4b36-803b-138d322202d1","originalAuthorName":"邬恩九"},{"authorName":"郑纪文","id":"e02f7d61-9121-4ce7-8bd5-fd9dafb4d12d","originalAuthorName":"郑纪文"},{"authorName":"肖志刚","id":"5ef36d45-7adf-425b-8b5f-7f76310d41d3","originalAuthorName":"肖志刚"},{"authorName":"","id":"613d9575-d26f-461e-8c1e-1f3a11d56c94","originalAuthorName":"张纯"},{"authorName":"谭继廉","id":"5f5304a3-69b3-4161-9ba8-aace432d66fc","originalAuthorName":"谭继廉"},{"authorName":"尹淑芝","id":"461c3d9a-f917-49de-87c0-29fcd46c0518","originalAuthorName":"尹淑芝"},{"authorName":"王素芳","id":"4240ad6b-66c0-4043-b447-ae551b41bf5b","originalAuthorName":"王素芳"},{"authorName":"靳根明","id":"21acfc09-5d02-4dd8-9956-e67a087aeecb","originalAuthorName":"靳根明"},{"authorName":"殷旭","id":"1ebfebc2-40af-4866-a1f8-5ac324181b0e","originalAuthorName":"殷旭"},{"authorName":"宋明涛","id":"50a2b1ab-9896-4680-9e00-9ef56a156851","originalAuthorName":"宋明涛"},{"authorName":"金卫阳","id":"788e54e1-6b16-41e9-9b92-5e3bd82ac1af","originalAuthorName":"金卫阳"},{"authorName":"朋兴平","id":"a3c59325-2527-4cfa-896c-cef26ad880bf","originalAuthorName":"朋兴平"},{"authorName":"李祖玉","id":"68b035fd-3e6e-4f2a-977b-41bf08a94f2d","originalAuthorName":"李祖玉"},{"authorName":"吴和宇","id":"e52af24a-ce9f-4e24-adbe-f96dede9f00c","originalAuthorName":"吴和宇"},{"authorName":"贺智勇","id":"32309a0f-1754-46b2-bfdb-d6968bdc67a0","originalAuthorName":"贺智勇"},{"authorName":"江栋兴","id":"50a26621-2209-4dd3-9d1c-8688c705fccb","originalAuthorName":"江栋兴"},{"authorName":"钱兴","id":"bbe5ef83-9fe4-43fd-a850-b0bb098cd361","originalAuthorName":"钱兴"}],"doi":"10.3969/j.issn.1007-4627.2000.01.012","fpage":"56","id":"d0cadc90-7eb6-4494-a54b-96e46857803e","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"55ae5847-faa9-4012-9c8f-7a82ad36bf82","keyword":"中能重离子反应","originalKeyword":"中能重离子反应"},{"id":"c053442c-3d37-4d89-87c0-fab43b0ecf8f","keyword":"热核裂变","originalKeyword":"热核裂变"},{"id":"382f007e-4d28-4a9b-8229-5dc888de5f04","keyword":"高激发态核衰变","originalKeyword":"高激发态核衰变"}],"language":"zh","publisherId":"yzhwlpl200001012","title":"重离子周边碰撞和中心碰撞引起的不同裂变行为","volume":"17","year":"2000"},{"abstractinfo":"采用循环伏安(CV)和恒电位阶跃(CA)等电化学技术,研究金刚石粉体对Ni电结晶形核/生长的影响,并通过扫描电镜观察复合镀层的表面形貌.结果表明:在Ni?金刚石复合镀液中,金刚石粉体吸附在阴极表面,对阴极产生屏蔽作用,Ni2+的有效放电面积减小,阻碍电荷转移,使复合镀液在循环伏安曲线中的还原电流降低;金刚石粉体缩短了Ni电结晶的形核驰豫时间(tmax),形核过电位正移,促进Ni电结晶形核;电镀时间越长,金刚石复合量越小,镀层表面越粗糙;Ni?金刚石复合镀液和Ni镀液的Ni电结晶形核可能为多晶沉积.","authors":[{"authorName":"王美娟","id":"9f0efc09-32d6-49ee-806a-94668a52183e","originalAuthorName":"王美娟"},{"authorName":"王日初","id":"954cb817-6afb-41ac-b4f7-f9d6f8d98f16","originalAuthorName":"王日初"},{"authorName":"彭超群","id":"6cb44aa7-00bd-4d8e-acfe-9cd4ab4d5d17","originalAuthorName":"彭超群"},{"authorName":"冯艳","id":"79345fbf-8fdd-4afe-8902-c13f8eca4ad3","originalAuthorName":"冯艳"},{"authorName":"","id":"4f775c2e-5781-459b-a104-0d22b4c05a5b","originalAuthorName":"张纯"}],"doi":"","fpage":"765","id":"61eae257-d687-4c7f-8b02-695e86dee3c3","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"cad27e20-1b05-4acd-900e-925f6a73bc69","keyword":"金刚石","originalKeyword":"金刚石"},{"id":"64ab23be-8486-40ab-8773-99f527b5ad38","keyword":"复合电镀","originalKeyword":"复合电镀"},{"id":"684b3015-efb9-4b48-bbeb-349869d68e72","keyword":"Ni","originalKeyword":"Ni"},{"id":"13594edd-39b0-4698-b8e4-6dc690a87826","keyword":"电结晶","originalKeyword":"电结晶"},{"id":"bc01d23b-6d1f-4b9d-8a78-49cfac98c19e","keyword":"形核","originalKeyword":"形核"},{"id":"677b2a92-d4c5-4fa2-9546-c8a367b04df8","keyword":"生长","originalKeyword":"生长"},{"id":"87bdea26-2d05-44f9-9d6c-93144560429f","keyword":"多晶沉积","originalKeyword":"多晶沉积"}],"language":"zh","publisherId":"zgysjsxb201303024","title":"金刚石粉体对Ni电结晶初期行为的影响","volume":"","year":"2013"},{"abstractinfo":"采取模压成型的方式制备发泡天然橡胶/乙烯-醋酸乙烯共聚物(EVA)复合材料,通过复合材料的相容性和硫化与发泡匹配机理,研究了EVA含量对天然橡胶发泡质量及力学性能的影响.结果表明,随着EVA含量的增加,泡孔直径、泡孔尺寸分布先增大后降低,泡孔密度先降低后增大.EVA含量为20 phr时,其泡孔质量最好,泡孔直径为97.1 μm,泡孔尺寸分布为23.2 μm,泡孔密度为6.8×106 cm-3,当EVA含量超过20 phr时,泡孔直径、泡孔尺寸分布逐渐增大,泡孔密度随之降低.复合发泡材料的硬度、冲击回弹性、热压缩永久变形等性能则随着EVA含量的增加出现小范围降低,但结合发泡材料的性价比来看,在EVA含量为20 phr时,发泡材料的力学性能较理想.","authors":[{"authorName":"敬","id":"a111d483-944d-4c54-a812-72441c50a129","originalAuthorName":"张敬"},{"authorName":"王醴均","id":"d30764df-4adb-40a8-94b7-37829e3bbc93","originalAuthorName":"王醴均"},{"authorName":"","id":"b4c4348c-3982-4210-b027-a2bab2bfdae1","originalAuthorName":"张纯"},{"authorName":"何力","id":"97abcb4f-502d-43c7-9f45-a886be3f7915","originalAuthorName":"何力"},{"authorName":"郭建兵","id":"dd302aa0-785c-4eba-ac17-b0b26a1fbd02","originalAuthorName":"郭建兵"},{"authorName":"于杰","id":"c7fb7fce-1ffc-42e4-b41e-7f010b0ce279","originalAuthorName":"于杰"},{"authorName":"龚维","id":"010543e3-a979-4c8f-982a-006d5d0542eb","originalAuthorName":"龚维"}],"doi":"","fpage":"53","id":"fe2392fc-eeb4-43f5-b93a-1b03df59f0e0","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"d2ac5806-7f8f-4596-b0d9-0c0aaf78d9c4","keyword":"乙烯-醋酸乙烯共聚物","originalKeyword":"乙烯-醋酸乙烯共聚物"},{"id":"d6eb44da-f571-4413-9b29-bab79a001c7f","keyword":"天然橡胶","originalKeyword":"天然橡胶"},{"id":"f00013b8-51cc-4fed-b86d-3d20fa199975","keyword":"发泡质量","originalKeyword":"发泡质量"},{"id":"1f262a53-1dc7-4e81-ba0a-884c6659b0f2","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gfzclkxygc201403012","title":"天然橡胶/EVA发泡复合材料发泡质量及力学性能的分析","volume":"30","year":"2014"},{"abstractinfo":"采用浸出方法使砷滤饼中的铜砷元素进行分离,铜以硫化铜的形式沉淀,砷以砷酸根离子进入溶液中.考察NaCl浓度、Na 2 S添加量、液固比、时间及温度等因素对砷滤饼中砷、铜浸出率的影响.得出最优的工艺条件如下:NaCl溶液浓度为20g/L、液固比7:1、Na2S与砷滤饼质量比3:4、浸出时间4 h、温度80℃、H2O220 mL.在此最优工艺条件下,砷浸出率高达95.56%,铜浸出率低于0.5%,浸出渣铜含量富集至33.6%.浸出液采用硫酸亚铁沉砷方法,沉砷率可以达到98%,生成的砷酸铁晶体含砷量为32.15%,滤液含砷量为0.23g/L,滤液可以返回浸出过程,实现循环利用.","authors":[{"authorName":"沈忱","id":"adb1f2c7-131c-4dec-bc0a-54c8fe94c0ca","originalAuthorName":"沈忱"},{"authorName":"闵小波","id":"1d16fea7-a6d4-4819-9a58-3a7bb9f1fadf","originalAuthorName":"闵小波"},{"authorName":"史美清","id":"988d2dc6-ac51-4e62-b57d-29862247f7cb","originalAuthorName":"史美清"},{"authorName":"周波生","id":"6057ec50-329a-4c48-98cd-755333c9c9e2","originalAuthorName":"周波生"},{"authorName":"赵宗文","id":"d3d2e5ed-f776-41ec-9c05-ac2e5171cf3e","originalAuthorName":"赵宗文"},{"authorName":"李辕成","id":"b4296cf4-c96e-4970-bcd9-6770132de584","originalAuthorName":"李辕成"},{"authorName":"","id":"7cf2d00f-362e-4009-93e6-c2951d7baff7","originalAuthorName":"张纯"}],"doi":"","fpage":"356","id":"aa07c027-d4fc-4240-b917-3814f63b078c","issue":"2","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"c74136bf-59ae-4cde-8207-32bd2310cbdf","keyword":"砷滤饼","originalKeyword":"砷滤饼"},{"id":"45ffc482-dd35-497a-973b-755a352670d9","keyword":"铜","originalKeyword":"铜"},{"id":"94b5ccd4-d8ad-4ad0-8a80-f0974a4f9751","keyword":"砷","originalKeyword":"砷"},{"id":"36d4b60c-571d-46af-9127-df6f39a50f07","keyword":"分离","originalKeyword":"分离"},{"id":"bfd8d504-b061-4935-a8d0-2974657ae482","keyword":"浸出","originalKeyword":"浸出"},{"id":"3678629a-165d-47a1-a3dc-60a15e758f8f","keyword":"脱砷","originalKeyword":"脱砷"}],"language":"zh","publisherId":"zgysjsxb201702016","title":"砷滤饼的铜砷分离","volume":"27","year":"2017"},{"abstractinfo":"采取模压成型制备发泡天然橡胶复合材料,通过复合材料硫化与发泡匹配机理,研究了硫化剂含量对发泡天然橡胶质量及力学性能的影响.结果表明:随着硫化剂含量的增加,发泡材料的泡孔直径、泡孔尺寸分布逐渐降低,泡孔密度先增加后降低;当硫化剂含量为2.5份时,其泡孔质量最理想,泡孔直径、泡孔密度分别为175.12μm、2.25×106cm-3.发泡天然橡胶材料的力学性能方面,其综合性能较好,邵氏硬度20,压缩永久变形95%,冲击回弹性59%.从发泡质量和力学性能的角度来看,当硫化剂含量为2.5份时,发泡材料的力学性能较好.","authors":[{"authorName":"麻玉龙","id":"c6421411-7e0a-4b7e-aeaa-aff3218fb20f","originalAuthorName":"麻玉龙"},{"authorName":"","id":"08a9ef97-1250-4cc9-b396-86cf10d01ad0","originalAuthorName":"张纯"},{"authorName":"敬","id":"f09748f3-7f5b-40d3-8bb5-52c1d9c19727","originalAuthorName":"张敬"},{"authorName":"龚维","id":"86cb701d-bf90-4403-9b7a-238fb9c2526f","originalAuthorName":"龚维"},{"authorName":"何力","id":"a3ecf5db-6eed-44e2-b0f5-ef84cc2ba549","originalAuthorName":"何力"}],"doi":"10.11896/j.issn.1005-023X.2014.20.014","fpage":"56","id":"95ad8eb6-8d74-4859-8ccf-5f4f9f0b94ff","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8702eee9-65d7-483b-8298-3a616b3953f8","keyword":"硫化剂","originalKeyword":"硫化剂"},{"id":"dd712b7f-2f33-4e8b-b9e6-b599ea3a99fc","keyword":"天然橡胶","originalKeyword":"天然橡胶"},{"id":"12367006-7966-43f4-a9eb-30920d9a41c8","keyword":"发泡行为","originalKeyword":"发泡行为"},{"id":"943d53cb-7b02-4c2f-8bc2-911bb5d7019b","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"cldb201420014","title":"硫化体系对发泡制品的质量及力学性能的影响","volume":"28","year":"2014"},{"abstractinfo":"通过使用高精度分光光度仪测量微孔发泡聚丙烯材料表面可见光的反射率来定量表征发泡材料内部的泡孔尺寸及分散状态,得到了发泡材料泡孔尺寸与反射率之间的关系.结果表明:微孔发泡聚丙烯表面光的反射率能够反映材料的发泡情况,反射率越大泡孔越小,反之则泡孔越大;通过最佳平方逼近建立起泡孔直径y与反射率x的函数关系:y=-12.772 8x +798.553 7.","authors":[{"authorName":"朱坤鹏","id":"4765185c-6ea9-4a80-a720-de76ad3ade30","originalAuthorName":"朱坤鹏"},{"authorName":"何力","id":"d9452f1e-15cc-4e28-b87b-81813f2826c1","originalAuthorName":"何力"},{"authorName":"周义","id":"c377f3ba-8d2a-469b-9b7f-3b7317d237e5","originalAuthorName":"周义"},{"authorName":"李良","id":"fe5cc071-7cf0-4aef-90c1-5d5fc962995b","originalAuthorName":"李良"},{"authorName":"","id":"940a8638-a92c-4d05-8957-00f506834809","originalAuthorName":"张纯"}],"doi":"","fpage":"13","id":"ac083349-5184-421e-8b10-50be8d1a37bb","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"537035ac-eef6-49b4-b757-50fb2f513037","keyword":"发泡","originalKeyword":"发泡"},{"id":"88ccae7f-21fe-4a5e-94f7-bb7dc7c830df","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"1451a7f4-11c4-4449-8000-73fa3d708005","keyword":"可见光","originalKeyword":"可见光"},{"id":"ae471d8a-6a46-4f36-80db-6475785aa2fa","keyword":"泡孔直径","originalKeyword":"泡孔直径"},{"id":"d2cf609a-cec5-40e9-ae98-9ca0c1af8fc7","keyword":"反射率","originalKeyword":"反射率"}],"language":"zh","publisherId":"jxgccl200811004","title":"微孔发泡聚丙烯材料泡孔尺寸测量的新方法","volume":"32","year":"2008"},{"abstractinfo":"通过对比微孔发泡PP、HDPE以及相应的未发泡PP、HDPE在不同实验温度下的Izod冲击强度,研究实验温度对微孔发泡PP、PE材料冲击性能的影响.结果表明:在实验温度范围内微孔发泡PP、HDPE以及相应的未发泡PP、HDPE相比较,随实验温度的降低,两者的Izod冲击强度的变化规律存在差异;通过对不同实验温度的冲击断口SEM分析,微孔对PP、HDPE冲击强度的作用机理为:一是裂纹扩展时微孔周围的树脂变形(及孔的变形)消耗能量,二是微孔的存在松弛了裂纹尖端应力集中,并会诱使主裂纹分解成次生裂纹,使裂纹扩展的方向和方式都发生变化,表现为裂纹扩展的阻力,三是微孔的引入减小了试样(材料)的有效承载面积.","authors":[{"authorName":"","id":"3e8c31a4-b6e3-4394-a24d-6b444dc97bf1","originalAuthorName":"张纯"},{"authorName":"何力","id":"c17eb6f2-caee-4520-967a-7ac8a70ff532","originalAuthorName":"何力"},{"authorName":"于杰","id":"87fa1563-4cca-4eed-8fe0-6ed002f165c5","originalAuthorName":"于杰"},{"authorName":"周国治","id":"96e50bca-3256-4fcf-9e39-70e92df6afd0","originalAuthorName":"周国治"},{"authorName":"廖永灵","id":"1204d980-d204-4b86-9f04-facb8df864e8","originalAuthorName":"廖永灵"},{"authorName":"何颖","id":"81cac559-23c4-40b5-9843-444c91c93524","originalAuthorName":"何颖"}],"doi":"","fpage":"103","id":"cd18c173-5331-4a1b-aa67-daf6d590d646","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"86796e6e-8d3e-4b9e-830c-4c892fea774e","keyword":"微孔发泡","originalKeyword":"微孔发泡"},{"id":"a8305e15-b07a-4fe9-84b6-b5776cf46f27","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"8fecab64-39d0-4ff1-8e0d-e6de31001f40","keyword":"高密度聚乙烯","originalKeyword":"高密度聚乙烯"},{"id":"30602cdb-2841-4532-a8b5-545c4a3d830e","keyword":"冲击强度","originalKeyword":"冲击强度"},{"id":"5df97541-6fc1-40c3-86b9-85dd5ca4be46","keyword":"实验温度","originalKeyword":"实验温度"}],"language":"zh","publisherId":"gfzclkxygc200811027","title":"温度对微孔发泡PP和HDPE材料冲击性能的影响","volume":"24","year":"2008"},{"abstractinfo":"设计了注塑工艺参数对高密度聚乙烯(HDPE)化学发泡质量影响的正交实验,用SEM对发泡HDPE材料样品的泡孔形态和尺寸进行了观察和测量统计,系统研究了注塑温度、注塑压力、注塑速度和冷却固化时间对化学发泡法制备高密度聚乙烯(HDPE)发泡材料泡孔平均直径、泡孔尺寸分布、泡孔密度的影响.结果表明,注塑温度对发泡HDPE的结构参数影响最大,其次为注塑压力.注塑温度的影响与其对发泡剂分解速度、产气量、熔体强度的影响而导致泡孔的形核和长大(并泡)过程有关.通过优化工艺,获得了泡孔平均直径为21μm、泡孔密度为每立方厘米3.2×107个、泡孔尺寸分布均匀的HDPE发泡材料样品.","authors":[{"authorName":"","id":"42caf239-ef25-4583-a0f6-a4a1346f3a66","originalAuthorName":"张纯"},{"authorName":"于杰","id":"94b45c0b-e241-40a4-a81a-d4cc9aa088ff","originalAuthorName":"于杰"},{"authorName":"何力","id":"66cf1b08-1eaa-4ef3-a640-6709d6e5c7ee","originalAuthorName":"何力"},{"authorName":"胡智","id":"9d1372f2-eb8c-4d50-906e-092b6256fdee","originalAuthorName":"胡智"},{"authorName":"周国治","id":"c80b128e-d02d-4291-b425-f5bee8109a82","originalAuthorName":"周国治"}],"doi":"","fpage":"107","id":"cf008354-c75b-4fbc-a63d-79e90c037b89","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"fd642485-84a0-4abf-b132-9c46b777db53","keyword":"高密度聚乙烯","originalKeyword":"高密度聚乙烯"},{"id":"18d2f833-21b0-4583-a065-161e3df1e709","keyword":"注塑工艺参数","originalKeyword":"注塑工艺参数"},{"id":"79b69932-cc73-4dd4-a0dc-4f6d86f1e8a1","keyword":"注塑温度","originalKeyword":"注塑温度"},{"id":"2500aede-135d-4e7a-bfdf-312810d59340","keyword":"微孔发泡","originalKeyword":"微孔发泡"}],"language":"zh","publisherId":"gfzclkxygc201010028","title":"注塑工艺参数对HDPE化学发泡行为的影响","volume":"26","year":"2010"},{"abstractinfo":"球形燃料元件无燃料区全方位X射线实时检验系统以X射线实时成像技术为理论基础,实现对球形燃料元件的全方位、快速检验.本文介绍了该系统的X射线成像原理、光路分析以及标尺和参考球的使用,并对标尺的固有误差作了分析.","authors":[{"authorName":"李继红","id":"221f9dcb-f4e9-437b-99ea-fb8f057b4886","originalAuthorName":"李继红"},{"authorName":"","id":"86ac84eb-d24c-4f54-85c5-1d7467944b68","originalAuthorName":"张纯"}],"doi":"10.3969/j.issn.1001-0777.2000.03.012","fpage":"41","id":"dbe86b58-2a56-41cd-bb20-1a53788075ed","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"6e233680-7767-41bb-9745-206cd1a0220d","keyword":"高温气冷堆","originalKeyword":"高温气冷堆"},{"id":"c525a77b-a260-4824-98a8-b4619c29ad8b","keyword":"球形燃料元件检验","originalKeyword":"球形燃料元件检验"},{"id":"9831c67a-4163-4b6c-8c5d-e3319cd61cd2","keyword":"X射线实时成像","originalKeyword":"X射线实时成像"}],"language":"zh","publisherId":"wlcs200003012","title":"球形燃料元件无燃料区的X射线实时成像检验技术","volume":"","year":"2000"},{"abstractinfo":"利用型腔体积可控注塑发泡装置制备不同体积膨胀率的聚丙烯和聚丙烯/有机蒙脱土(PP/OMMT)复合材料发泡试样,探究了不同体积膨胀率下聚丙烯发泡行为.结果表明,在较高的体积膨胀率下,泡孔结构趋于恶化,而有机蒙脱土的引入提高了聚丙烯粘弹响应和降温结晶速率,起到了抑制泡孔结构恶化的作用.在泡孔生长动力学研究的基础上,将泡孔生长过程分为2个阶段,快速生长阶段和慢速生长应力松弛阶段,分析了聚合物粘弹性对泡孔生长、稳定过程的影响.","authors":[{"authorName":"郝明洋","id":"90a8f91e-8c7b-40dc-bbc8-82412b349191","originalAuthorName":"郝明洋"},{"authorName":"段焕德","id":"ab137b14-dabf-4268-894d-2019b02a2c50","originalAuthorName":"段焕德"},{"authorName":"","id":"00e03dde-56ea-4faa-905c-01cc7575f7de","originalAuthorName":"张纯"},{"authorName":"龚维","id":"cd07a2a9-4ea1-46fd-a348-d9c104f5883d","originalAuthorName":"龚维"},{"authorName":"何力","id":"42abdaa8-d1bf-4cff-beb8-815de258856f","originalAuthorName":"何力"}],"doi":"","fpage":"81","id":"e50989f4-720e-4118-a75a-439aec299cfe","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"45ecf3ec-a399-4471-a689-0b306c6e2095","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"af9eb80d-98b4-4146-9199-c64b3bc182be","keyword":"有机蒙脱土","originalKeyword":"有机蒙脱土"},{"id":"b81594eb-9a8e-4f93-b6dd-e3afad9c5828","keyword":"注塑发泡","originalKeyword":"注塑发泡"},{"id":"ba7d3247-522b-4e80-bdc0-f922759140e5","keyword":"体积膨胀率","originalKeyword":"体积膨胀率"},{"id":"aac7b322-eec8-4e12-b36d-4f1c990b0d36","keyword":"发泡行为","originalKeyword":"发泡行为"}],"language":"zh","publisherId":"gfzclkxygc201510016","title":"聚丙烯/有机蒙脱土复合材料的发泡行为","volume":"31","year":"2015"}],"totalpage":801,"totalrecord":8009}