{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用粉末冶金法制备了SiC颗粒增强铝基梯度复合材料,研究了其疲劳裂纹扩展行为及其亚临界裂纹扩展行为.疲劳裂纹从30%SiC层向5%SiC层扩展时,发生了裂纹扩展延滞;而在静载下,当裂纹从30%SiC层向5%SiC层扩展时,随着裂纹长度的增加其裂纹扩展阻力增大.","authors":[{"authorName":"许富民","id":"88fb84ee-a174-47bc-b4f9-c8a6ef1c0386","originalAuthorName":"许富民"},{"authorName":"朱世杰","id":"5b5c5dbe-bc6b-4899-b1a8-242609edaca2","originalAuthorName":"朱世杰"},{"authorName":"赵杰","id":"6d8730ed-6907-4280-a97b-ddc47fe2da4a","originalAuthorName":"赵杰"},{"authorName":"王富岗","id":"a0fc4388-b223-4c5d-ba3f-265d89ebb636","originalAuthorName":"王富岗"}],"doi":"10.3969/j.issn.1001-4381.2003.10.004","fpage":"11","id":"43d20ba3-401c-4147-8e71-fa7c35ba3254","issue":"10","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"81e8a59b-83bc-4cd4-8826-fd387ea6f52d","keyword":"梯度材料","originalKeyword":"梯度材料"},{"id":"a7a725df-3b16-43a0-a60f-0021dbfecb0e","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"},{"id":"0ae28fe1-bce2-4d82-945b-d9c04116d3a3","keyword":"延滞","originalKeyword":"延滞"},{"id":"ecf12ac7-c456-4ff1-ab9e-b49cd2362c3c","keyword":"R曲线","originalKeyword":"R曲线"}],"language":"zh","publisherId":"clgc200310004","title":"SiCp/Al梯度复合材料疲劳裂纹扩展和亚临界扩展行为","volume":"","year":"2003"},{"abstractinfo":"运用电子背散射衍射(EBSD)分析技术对2124-T851铝合金板材的疲劳裂纹扩展进行了分析研究.结果表明,疲劳裂纹扩展以穿晶为主,随晶粒取向的不同而呈现一定的择优性.当裂纹扩展到晶界时,由于相邻晶粒间存在的取向差,裂纹会偏离其正常扩展路径而发生偏转,而晶内的裂纹偏转则更多是因为粗大第二相粒子在循环应力作用下协调变形能力差引起的.裂纹扩展过程中发生裂纹分叉与特定的晶体学方向有关,是由于裂纹尖端多个等效{111}<110>滑移系的同时开动造成的.","authors":[{"authorName":"蹇海根","id":"af63685f-70f5-416c-9bbb-1009b70cdfb7","originalAuthorName":"蹇海根"},{"authorName":"尹志民","id":"fd4bf4db-a686-4d56-9cd9-23b6cd55a35d","originalAuthorName":"尹志民"},{"authorName":"姜锋","id":"e46153ba-a3e3-4d31-ac9e-45939f35a1cd","originalAuthorName":"姜锋"},{"authorName":"李雪","id":"8f0932ba-d011-4d26-9182-a2cc0cb65441","originalAuthorName":"李雪"}],"doi":"","fpage":"1332","id":"c126cee0-e194-4c1e-9de5-deb72e837827","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"9ae1bf73-4a45-4e2d-b5ca-03200e8f842e","keyword":"2124铝合金","originalKeyword":"2124铝合金"},{"id":"d6146029-1b52-47cf-8537-541dcdf9a51e","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"},{"id":"e71a7e9f-c157-4ec4-8baf-00d4b1bbf9a7","keyword":"微取向","originalKeyword":"微取向"},{"id":"48dff841-2ec4-4ce3-8a96-592951818b38","keyword":"背散射电子衍射","originalKeyword":"背散射电子衍射"}],"language":"zh","publisherId":"xyjsclygc201406012","title":"2124铝合金疲劳裂纹扩展的EBSD分析","volume":"43","year":"2014"},{"abstractinfo":"文中采用CT(Compact Tension)试样对MDYB-3有机玻璃在-50℃~90℃范围内进行了裂纹扩展试验研究.基于金属裂纹扩展公式,结合有机玻璃疲劳裂纹扩展特性,得到了描述有机玻璃裂纹扩展行为的公式.将其与有机玻璃在不同温度下的试验结果对比,发现得到的公式能够较完整地描述有机玻璃疲劳裂纹在各个阶段的扩展行为.","authors":[{"authorName":"高宗战","id":"f6dd8976-0eed-46a1-99ee-7692a11e7c14","originalAuthorName":"高宗战"},{"authorName":"刘伟","id":"7abf33de-a6d3-4a29-925d-a4ed731d6508","originalAuthorName":"刘伟"},{"authorName":"岳珠峰","id":"a82a2014-e36a-45cc-b0f7-7f7d7f32f974","originalAuthorName":"岳珠峰"},{"authorName":"杨治国","id":"389962f9-33f3-4423-9378-b727188f1c95","originalAuthorName":"杨治国"}],"doi":"","fpage":"90","id":"5bd9542d-4014-467f-91d8-cfd364e7a544","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"92faab34-c906-4ca1-bda8-23ed60e33efc","keyword":"有机玻璃","originalKeyword":"有机玻璃"},{"id":"0336a214-a82c-4a7e-abee-66d1eb0d67be","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"},{"id":"ad3a127c-5ccd-4c3c-9084-f50816dd737d","keyword":"门槛值","originalKeyword":"门槛值"},{"id":"0b95fca7-9e42-4c4c-9c54-581c9e7c1c4f","keyword":"应力强度因子","originalKeyword":"应力强度因子"},{"id":"1435696f-87e0-4750-90b3-4bc9ed50ac53","keyword":"断裂韧性","originalKeyword":"断裂韧性"},{"id":"115b3a84-8231-4348-835b-801e9d957b95","keyword":"温度","originalKeyword":"温度"}],"language":"zh","publisherId":"clkxygc200801023","title":"有机玻璃疲劳裂纹扩展","volume":"26","year":"2008"},{"abstractinfo":"温度、载荷频率和应力比是影响材料疲劳裂纹扩展行为的主要因素.发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是人们追求的目标.本文介绍了近几十年来在温度、载荷频率和应力比对材料疲劳裂纹扩展行为的影响机理方面的研究进展,其中对应力比的影响进行了详细的介绍,指出了常用理论的不足,对新的研究方法进行了论述.","authors":[{"authorName":"高文柱","id":"a92a0aa4-68b6-4948-8d42-6ddba855e1c9","originalAuthorName":"高文柱"},{"authorName":"吴欢","id":"a0d69d0d-2664-45d9-949a-4467448d50b5","originalAuthorName":"吴欢"},{"authorName":"赵永庆","id":"3d065755-b068-4940-90d2-18f0e29a8172","originalAuthorName":"赵永庆"}],"doi":"10.3969/j.issn.1009-9964.2007.06.005","fpage":"33","id":"ec1ed966-0a18-4442-84f8-f82bd2a34e89","issue":"6","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"68d1fe7b-400f-4787-a49b-f113852bb091","keyword":"温度","originalKeyword":"温度"},{"id":"3920fbd6-b162-4cb1-abd1-2fc5f1a7e4ae","keyword":"载荷频率","originalKeyword":"载荷频率"},{"id":"0e6a5cbb-1693-43f2-8b91-7692a144abd5","keyword":"应力比","originalKeyword":"应力比"},{"id":"5bfe629e-7c27-46fa-b441-21d0fab07cd1","keyword":"理论","originalKeyword":"理论"},{"id":"1de95332-9cee-4600-a3aa-a16a045beb95","keyword":"方法","originalKeyword":"方法"},{"id":"160d9921-ec4f-4a54-9854-7ae964f18e62","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"}],"language":"zh","publisherId":"tgyjz200706005","title":"金属材料疲劳裂纹扩展研究综述","volume":"24","year":"2007"},{"abstractinfo":"以电解铝硅钛中间合金为主要原料,熔炼与ZL101A合金成分基本相同的合金AST101.对比研究了AST101和ZL101A合金的疲劳裂纹扩展行为.在应力比R=0.1和0.5的试验条件下,AST101合金的抗疲劳裂纹扩展能力不如ZL101A合金.金相分析表明,AST101合金的铁含量较高,在合金中形成了脆性针状富铁相,该相自身的断裂和与基体的脱粘促进了合金疲劳裂纹的扩展.此外,AST101合金的微观组织特性影响了疲劳裂纹的闭合程度,也降低了合金的抗疲劳裂纹扩展能力.","authors":[{"authorName":"王明星","id":"3a37c1e7-80c1-4fb0-a0c6-3c515a9b9a7e","originalAuthorName":"王明星"},{"authorName":"刘志勇","id":"f418723e-81d7-41d7-8a0f-3a1bb4832b98","originalAuthorName":"刘志勇"},{"authorName":"翁永刚","id":"d430fe05-7b67-46d3-a2ae-b68c6479fd7d","originalAuthorName":"翁永刚"},{"authorName":"宋天福","id":"80c99116-8176-48d5-bdf3-16f9df1f016b","originalAuthorName":"宋天福"},{"authorName":"霍裕平","id":"e3014099-da45-46ce-8aba-515de9857f76","originalAuthorName":"霍裕平"},{"authorName":"谢敬佩","id":"10b1a71e-4d19-4a9e-9aad-c3cd07a6729d","originalAuthorName":"谢敬佩"}],"doi":"10.3969/j.issn.1000-3738.2003.01.014","fpage":"47","id":"23eb9a97-e216-4030-b37f-f01e0cdecf5a","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"a35e0269-9d67-4801-bc75-ce618a1420c8","keyword":"铝硅合金","originalKeyword":"铝硅合金"},{"id":"2416486c-1bd9-41d0-a118-96abd2780818","keyword":"富铁相","originalKeyword":"富铁相"},{"id":"c94dc53f-4b47-4f4f-b378-4bb256a12e41","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"}],"language":"zh","publisherId":"jxgccl200301014","title":"铝硅钛合金疲劳裂纹扩展行为研究","volume":"27","year":"2003"},{"abstractinfo":"疲劳性能是粉末冶金铝合金一项重要的使用性能,研究疲劳裂纹扩展行为是研究疲劳性能的一种重要的方法.总结了影响粉末冶金铝合金疲劳裂纹扩展速率的各种外部因素和内部因素,外部因素主要包括应力比、温度、制备方法等,内部因素有晶粒尺寸、夹杂物、铝基复合材料中的增强相颗粒等,并详细阐述了这些因素的影响机制.","authors":[{"authorName":"陈鼎","id":"bf1c4112-279b-4856-b151-9d4f0bb0df7b","originalAuthorName":"陈鼎"},{"authorName":"张倩霞","id":"0855d6d5-ed8b-4d6d-a1f2-5f6a36d984e1","originalAuthorName":"张倩霞"},{"authorName":"宁荣","id":"9547b08d-2ae4-49af-acd3-6fbab4214f71","originalAuthorName":"宁荣"},{"authorName":"陈振华","id":"b3b66d21-62e4-4d69-b74e-90a4998307e0","originalAuthorName":"陈振华"}],"doi":"10.11896/j.issn.1005-023X.2014.17.002","fpage":"10","id":"b3d2715c-91f8-4365-8cb9-6dfd83fff8d5","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"025710cb-b0dd-4d54-8689-45833cb57de6","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"3930eba7-0a20-4cf7-851f-150cecdecbf1","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"f0388eaf-4e00-4ae4-ad54-50e062d0b491","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"}],"language":"zh","publisherId":"cldb201417002","title":"粉末冶金铝合金的疲劳裂纹扩展行为","volume":"28","year":"2014"},{"abstractinfo":"采用SEM,TEM及疲劳性能测试等分析测试手段,系统地研究了2E12 铝合金在室温空气、潮湿气体及盐雾环境下的疲劳裂纹扩展速率.结果发现2E12合金具有良好的疲劳性能,疲劳裂纹扩展速率优于国外的2524铝合金.利用修正的Paris公式分析腐蚀介质对合金的疲劳裂纹扩展性能影响轻重程度依次为:室温空气《潮湿气体《盐雾环境.不同环境条件下合金的疲劳裂纹形貌均表现微观裂纹扩展的晶界小平面、宏观裂纹扩展的疲劳条纹以及剪切撕裂的微观结构.在腐蚀环境下,宏观裂纹扩展表现出更多的脆性裂纹扩展特征,氢脆导致塑性区脆化及腐蚀诱导的阳极溶解是导致裂纹扩展性能降低的原因.","authors":[{"authorName":"杨胜","id":"afb07803-e4fa-4fc4-9298-96ca39a505ad","originalAuthorName":"杨胜"},{"authorName":"易丹青","id":"95ab6277-93e3-4b6e-85b3-d4cc6e796ff4","originalAuthorName":"易丹青"},{"authorName":"杨守杰","id":"3d36f212-f38d-46ca-b95f-8452dc9bc6f6","originalAuthorName":"杨守杰"},{"authorName":"钟利","id":"7c2c4034-1318-4584-ab5e-131a1618b66b","originalAuthorName":"钟利"}],"doi":"10.3969/j.issn.1001-4381.2007.12.006","fpage":"26","id":"e84b50db-49a4-43eb-8ca2-5ee8aaa8d266","issue":"12","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"3845bd4e-6305-4e4f-90f6-0c291d7035fe","keyword":"2E12铝合金","originalKeyword":"2E12铝合金"},{"id":"3635749e-b567-4c89-bebd-6355a86d80cf","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"cd552214-2a54-4dc6-a75b-6f16d21f0fd5","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"},{"id":"b994eea4-1e71-4c93-8e9c-c5dfcb321084","keyword":"氢脆","originalKeyword":"氢脆"}],"language":"zh","publisherId":"clgc200712006","title":"腐蚀环境下2E12航空铝合金疲劳裂纹扩展行为研究","volume":"","year":"2007"},{"abstractinfo":"对300M钢在空气和质量分数3.5%NaCl水溶液中分别进行了疲劳裂纹扩展速率试验,得到了其疲劳裂纹扩展速率-应力强度因子范围曲线,并分别利用Paris公式和Walker公式对曲线进行了拟合;分析了应力比、腐蚀环境、频率对疲劳裂纹扩展速率的影响.结果表明:300M钢的疲劳裂纹扩展速率随应力比的增加而增大;在相同应力比下,300M钢在NaCl水溶液中的疲劳裂纹扩展速率在裂纹扩展前期比在空气中的快,在扩展后期则趋于一致;较低试验频率下300M钢在裂纹扩展前期的疲劳裂纹扩展速率比在较高频率下的快.","authors":[{"authorName":"盛伟","id":"3b959aca-7c23-47b4-8cf2-3ae373dab6bd","originalAuthorName":"盛伟"},{"authorName":"刘天琦","id":"6c1ccf81-c81b-4145-8ef1-e84835f38a57","originalAuthorName":"刘天琦"},{"authorName":"马少俊","id":"2c848ff5-996e-4b59-b0f5-87affab9fa5c","originalAuthorName":"马少俊"},{"authorName":"陈天运","id":"142005c2-5c32-4921-aaeb-1103f17c23b1","originalAuthorName":"陈天运"}],"doi":"10.11973/jxgccl201706005","fpage":"17","id":"30f8e5b0-8045-47eb-b91d-ce9f0cd1b2e1","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"5a4e6205-43a9-4d71-bed4-6366842a693b","keyword":"300M钢","originalKeyword":"300M钢"},{"id":"e28b8d98-b3c6-43bb-976e-5f11d1a64126","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"},{"id":"5623ceae-8871-4b46-9e98-b14d37128e94","keyword":"应力比","originalKeyword":"应力比"},{"id":"73738b36-999d-44a8-aa5c-a56791d0f706","keyword":"腐蚀疲劳","originalKeyword":"腐蚀疲劳"}],"language":"zh","publisherId":"jxgccl201706005","title":"不同条件下300M钢的疲劳裂纹扩展行为","volume":"41","year":"2017"},{"abstractinfo":"用紧凑拉伸试样研究了不同应力比和超载比对X52管线钢疲劳裂纹扩展速率的影响,并对疲劳断口形貌进行SEM分析.结果表明,拉伸超载有阻滞X52钢疲劳裂纹扩展的作用,使疲劳裂纹扩展由超载扩展,减速扩展和恢复扩展三个阶段组成.在恒定的应力比下,超载比越大,裂纹扩展的阻滞效应也越明显.超载前后形貌差别越大;在恒定超载比下,低应力比的裂纹扩展阻滞现象更明显.","authors":[{"authorName":"","id":"15eb6268-da90-4d9b-bc9e-6c6ce810f4db","originalAuthorName":""},{"authorName":"陈迎锋","id":"a25bf538-3081-4743-8367-a325e03fae62","originalAuthorName":"陈迎锋"},{"authorName":"","id":"3c7df8bf-1ace-4d85-9f52-b50e253a6851","originalAuthorName":""}],"doi":"","fpage":"123","id":"6ffa50eb-e053-455a-a532-7bd2c94da958","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"8ef864a6-60b2-4401-8eaf-22e460d2e441","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"},{"id":"427cebb5-eaad-451b-85ec-f5eace938d1a","keyword":"超载比","originalKeyword":"超载比"},{"id":"117556ea-1346-476c-bd93-55a9077aa9e0","keyword":"应力比","originalKeyword":"应力比"},{"id":"04e46357-7dd5-4996-8dcb-02ff140432e4","keyword":"X52管线钢","originalKeyword":"X52管线钢"}],"language":"zh","publisherId":"jsrclxb200804028","title":"超载对X52管线钢疲劳裂纹扩展速率的影响","volume":"29","year":"2008"},{"abstractinfo":"基于材料裂纹扩展阻力曲线(R曲线)及裂纹扩展能量释放率理论,定义疲劳载荷下的有效能量释放率(Geff)为疲劳裂纹完全张开后用于裂纹扩展的能量,与同一载荷循环中由裂纹扩展阻力曲线表征的消耗能相等,提出了一种能够反映裂纹扩展物理本质的疲劳裂纹扩展寿命预测模型.该模型可以计算每一载荷循环中的裂纹扩展量,进而预测疲劳裂纹扩展寿命.通过试验测定了7050-T7451铝合金板材的R曲线,采用最小二乘法拟合获得到了R曲线表达式.运用本模型对同种材料耳片结构的裂纹扩展寿命进行了预测,与试验结果吻合较好,优于传统Paris模型的预测结果.","authors":[{"authorName":"伍黎明","id":"038a35a2-a9d1-4d76-a469-78b20551827d","originalAuthorName":"伍黎明"},{"authorName":"何宇廷","id":"2a2fff21-99e7-4989-bebf-4b42ad2212e7","originalAuthorName":"何宇廷"},{"authorName":"张海威","id":"b94c6424-9fc5-4a00-9cb5-bb3a43a3da1f","originalAuthorName":"张海威"},{"authorName":"张腾","id":"3a6ca7e9-e99a-46b4-acc1-a8bda42c5bb8","originalAuthorName":"张腾"}],"doi":"10.3969/j.issn.1005-5053.2013.6.013","fpage":"76","id":"709db643-76a0-4518-bd99-2a64450884b6","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"8809af96-08bc-4cf4-be70-88b733d9fc5b","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"},{"id":"cf716a47-b5cc-4c6a-81b3-17297c67300d","keyword":"R曲线","originalKeyword":"R曲线"},{"id":"bef4bfb4-c89a-431b-b7e3-514ec2597689","keyword":"能量释放率","originalKeyword":"能量释放率"},{"id":"bc3c02e7-a75f-4c94-b5aa-b3df1b40d1d6","keyword":"耳片结构","originalKeyword":"耳片结构"},{"id":"1e4e6251-d455-437c-9d1f-5b7d4811fc20","keyword":"损伤容限","originalKeyword":"损伤容限"}],"language":"zh","publisherId":"hkclxb201306013","title":"基于材料R曲线的耳片接头疲劳裂纹扩展寿命预测方法","volume":"33","year":"2013"}],"totalpage":1070,"totalrecord":10691}