{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":1,"startPagecode":1},"records":[{"abstractinfo":"采用常规熔铸、热处理、小挤压比挤压及轧制这一低成本并适合于工业化规模应用的路线,研制了一种具有高应变速率超塑性的铸锭铝合金Al-Cu-Mg-Ti.拉伸试验结果表明:在温度为793K、初始应变速率为3.16×10-1s-1的拉伸变形条件下,其超塑伸长率为218%,流变应力为32.5MPa.断面及表面形貌SEM分析和初熔行为的DSC分析表明,该合金高应变速率超塑性变形来自于晶界滑动和位错滑移,与液相没有关系.","authors":[{"authorName":"许晓静","id":"b6a3ddfc-ab1d-4c68-8b78-602a57f512cc","originalAuthorName":"许晓静"},{"authorName":"徐海卫","id":"1409f193-d853-4d10-88f4-fcee99328ce9","originalAuthorName":"徐海卫"},{"authorName":"张洁","id":"c6068740-2ee6-4452-85ba-a9acbfd8ffd5","originalAuthorName":"张洁"},{"authorName":"汪建敏","id":"316861ea-f100-467e-8437-3da7bc25466a","originalAuthorName":"汪建敏"},{"authorName":"刘忠德","id":"e497a738-12b4-4231-8327-02a415174b4f","originalAuthorName":"刘忠德"},{"authorName":"程晓农","id":"4891848b-a497-4e9f-b1fa-d4b86f13562e","originalAuthorName":"程晓农"},{"authorName":"蔡兰","id":"17b2b120-e051-4748-8823-05973653b996","originalAuthorName":"蔡兰"}],"doi":"","fpage":"2157","id":"7ac3f819-8ad4-48ab-a8ca-a6eddd56820b","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"85e2b98f-ec70-4cf2-82be-20dca32d41ca","keyword":"超塑性","originalKeyword":"超塑性"},{"id":"deafb235-82b3-4e61-9352-f71a0c6e95b7","keyword":"高应变速率","originalKeyword":"高应变速率"},{"id":"afbcfd05-36a2-4cd6-b83a-50793c50887a","keyword":"铝合金","originalKeyword":"铝合金"}],"language":"zh","publisherId":"gncl2004z1596","title":"铸锭铝合金Al-Cu-Mg-Ti高应变速率超塑性","volume":"35","year":"2004"},{"abstractinfo":"微弧氧化技术是一种直接在有色金属表面原位生长陶瓷膜的新技术.详细介绍了微弧氧化技术的发展历史和研究现状,微弧氧化的基本原理、基本工艺过程以及膜层的性能特点,并对这种陶瓷膜层的应用予以展望.","authors":[{"authorName":"侯亚丽","id":"5b20aea2-9b9d-4956-9771-8d00e44bbfae","originalAuthorName":"侯亚丽"},{"authorName":"刘忠德","id":"6f11cc43-7dcf-4c40-bac9-5dd2a5a7be36","originalAuthorName":"刘忠德"}],"doi":"10.3969/j.issn.1001-3849.2005.03.007","fpage":"24","id":"0dfd7c8d-21ac-43dc-baf1-10e3d5141cfc","issue":"3","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"16705ba4-d125-4cd7-a2e1-02ba801ecaf9","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"d12628f2-cd81-4e9d-beae-455fbcd777f0","keyword":"陶瓷膜层","originalKeyword":"陶瓷膜层"},{"id":"7ae06e65-5cbf-49c7-acad-dae8cf5df093","keyword":"有色金属","originalKeyword":"有色金属"}],"language":"zh","publisherId":"ddjs200503007","title":"微弧氧化技术的研究现状","volume":"27","year":"2005"},{"abstractinfo":"采用交流微弧氧化法于NazSiO3和Na3PO4的混合溶液中,在Ti6Al4V钛合金表面制备了氧化物陶瓷膜;研究了脉冲频率对氧化膜厚度、表面形貌、物相组成和耐腐蚀性能的影响.结果表明:随着脉冲频率的增高,氧化膜的厚度逐渐减小,氧化膜表面的孔径尺寸减小,微孔数量逐渐增多;氧化膜主要由锐钛矿相和金红石相两种TiO2组成,当脉冲频率低于500 Hz时,频率对氧化膜各相含量的影响不明显;当脉冲频率超过500 Hz时,随着频率的增高,氧化膜中金红石相TiO2的含量稍有增加;表面覆盖氧化膜的Ti6Al4V钛合金在30%硫酸中的耐腐蚀性能比表面未覆盖氧化膜的有明显提高.","authors":[{"authorName":"刘忠德","id":"bf15ab73-f8cb-412d-a505-34b0c97c1bbc","originalAuthorName":"刘忠德"},{"authorName":"孙茂坚","id":"e408db28-755f-455b-9ba9-13a8815fd90a","originalAuthorName":"孙茂坚"},{"authorName":"向正群","id":"0ee58b20-77c7-4235-8aaf-d3e1e94d6aa0","originalAuthorName":"向正群"},{"authorName":"张中元","id":"5d384dd3-cdc1-46a9-8c3b-087ca0c74e0b","originalAuthorName":"张中元"},{"authorName":"付华","id":"56653ed1-055b-4df8-bb2f-8fc651c8e31a","originalAuthorName":"付华"}],"doi":"","fpage":"43","id":"1f552b33-ed59-43c3-93c8-7d7a4b647fa4","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"0d4a3a0d-ebab-484d-98c1-8712b530c09a","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"e369e6b1-0e45-4c67-a59e-f20c46c68d84","keyword":"脉冲频率","originalKeyword":"脉冲频率"},{"id":"3b193b26-031a-4530-92b3-cbe081100ad6","keyword":"表面形貌","originalKeyword":"表面形貌"},{"id":"8f9cf4e6-beac-4fef-b9ab-aa05e488a63e","keyword":"耐腐蚀性能","originalKeyword":"耐腐蚀性能"}],"language":"zh","publisherId":"jxgccl200903012","title":"脉冲频率对钛合金微弧氧化膜的影响","volume":"33","year":"2009"},{"abstractinfo":"采用微弧氧化及水热合成处理方法制备钛合金表面生物膜层.应用扫描电子显微镜,EDS元素能谱及X射线衍射对薄膜的微观形貌、元素成分和相组成进行观察和分析,通过划痕试验检测膜基结合力,并研究试样在Hank's 模拟体液中耐腐蚀性能.将试样高温消毒后,分别植入至动物皮下组织,52 d后取出种植体并进行分析.结果表明:膜层与基体结合力可达26N左右,MAO-HS试样耐腐蚀性远强于基体试样;试验动物在试验过程中均未发生异常情况,微观形貌分析MAO-HS组试样发现膜层表面存在大量组织攀附,并含有一定比例的C、K元素.对照基体试样组,未见组织攀附.作为种植体材料,较基体合金MAO-HS试样表现出更为优异的组织相容性.","authors":[{"authorName":"罗锐","id":"934af0ad-35c4-47db-9c25-3940fef857b8","originalAuthorName":"罗锐"},{"authorName":"刘忠德","id":"4400c27e-c094-4a33-83e9-88fc9fb82c72","originalAuthorName":"刘忠德"},{"authorName":"周兴华","id":"a978f076-261d-4a6a-9020-af4044e36a34","originalAuthorName":"周兴华"},{"authorName":"程晓农","id":"d5c4492d-3041-459c-93bb-2de0caf57bcf","originalAuthorName":"程晓农"},{"authorName":"张迎涛","id":"c3153ac1-13ec-4a28-bdcb-63f13f63bd7e","originalAuthorName":"张迎涛"},{"authorName":"武文钰","id":"f4be461f-1636-4314-b29e-f2051be80995","originalAuthorName":"武文钰"}],"doi":"10.7513/j.issn.1004-7638.2013.04.003","fpage":"13","id":"cac5ac23-2321-410e-8d69-7430639ef4a5","issue":"4","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"3d9a31a6-a735-4b10-9c90-dc21129dc496","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"1a1208f8-d603-48d5-a7e6-0c00e57910c2","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"ad6230a8-7ff1-4627-b726-a993881859d6","keyword":"水热处理","originalKeyword":"水热处理"},{"id":"c55e80f4-17d2-4128-8f49-914880704ffe","keyword":"生物涂层","originalKeyword":"生物涂层"},{"id":"06901c76-e644-4b5f-90b7-8653bc8fb1eb","keyword":"皮下种植","originalKeyword":"皮下种植"},{"id":"a4dc0aea-e198-4e2c-afe6-9cbe866183db","keyword":"组织相容性","originalKeyword":"组织相容性"}],"language":"zh","publisherId":"gtft201304003","title":"微弧氧化和水热处理复合制备钛合金生物涂层及其组织相容性研究","volume":"34","year":"2013"},{"abstractinfo":"采用微弧氧化(MAO)手段在Ti6Al4V表面制备TiO2陶瓷膜层,结合水热处理(HS)方法诱发膜层内生成羟基磷灰石(HA);以抗凝血性能、抗溶血性能、抗血小板黏附和材料的细胞毒性为指标,对Ti6Al4V基体合金、具有微弧氧化陶瓷膜层的Ti6Al4V合金和经水热合成处理后的Ti6Al4V微弧氧化膜层样品进行生物相容性综合评定.结果表明,经微弧氧化和水热合成处理后样品表现出优异的抗溶血性,良好的抗凝血性和血小板黏附以及无毒性,说明Ti6Al4V合金表面生成的羟基磷灰石复合薄膜赋予材料表面良好的生物相容性.","authors":[{"authorName":"刘忠德","id":"97d26c48-f280-4721-8a30-34de1a674110","originalAuthorName":"刘忠德"},{"authorName":"罗锐","id":"2433d970-ba83-4568-81c9-967929b61396","originalAuthorName":"罗锐"},{"authorName":"程晓农","id":"27fa5e34-9af5-4df4-81f1-1ad2384b161b","originalAuthorName":"程晓农"},{"authorName":"周兴华","id":"d69d489d-41c8-40c5-9868-94b694fd5159","originalAuthorName":"周兴华"},{"authorName":"张迎涛","id":"6577024e-f312-4426-95e1-0591e38c05ad","originalAuthorName":"张迎涛"},{"authorName":"严飞祥","id":"f0272e68-036b-4e67-923e-1f7fad6d08c2","originalAuthorName":"严飞祥"}],"doi":"","fpage":"355","id":"cfceda8c-f43e-450f-84c1-c7d595cdb674","issue":"4","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"15717bbe-c222-48bd-bd58-30eecc1a9d5a","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"21556389-ef19-4cbd-8cf5-90c3e6304710","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"b7374d4b-c00a-476d-9d30-1323eb90b44e","keyword":"水热处理","originalKeyword":"水热处理"},{"id":"63d46ac6-0974-4c22-92f6-ec441dbb0295","keyword":"羟基磷灰石薄膜","originalKeyword":"羟基磷灰石薄膜"},{"id":"747e2e1c-0db6-43ac-a987-be78e981099b","keyword":"生物相容性","originalKeyword":"生物相容性"}],"language":"zh","publisherId":"clyjxb201304004","title":"Ti6Al4V微弧氧化膜的生物相容性","volume":"27","year":"2013"}],"totalpage":1,"totalrecord":5}