{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用射频等离子体增强化学气相沉积(RFPECVD)法制备了不同硼烷掺杂比例的薄膜.随后在不同温度、不同气氛下,对沉积得到的P薄膜进行了退火处理.研究发现,对初始化率较高的薄膜,退火后其化率发生下降;初始化率较低的薄膜,退火后其化率则有所提高;并且,在高真空中退火更有利于薄膜的化.退火后,薄膜表面粗糙度的变化情况受其初始化率的影响;薄膜的暗电导率有大幅度的增加.其中,掺杂浓度较高的薄膜,在真空退火后其化率、表面粗糙度和电导都有显著的提高.","authors":[{"authorName":"王果","id":"29fa2d2d-f091-46d7-a3be-892f5457d3dd","originalAuthorName":"王果"},{"authorName":"卢景霄","id":"f80306b9-d669-4f61-97c7-eadbca15fc72","originalAuthorName":"卢景霄"},{"authorName":"李新利","id":"e25ac470-8e46-455c-a493-7958232c8d7f","originalAuthorName":"李新利"},{"authorName":"高海波","id":"38511006-637c-4725-855b-809d79d0e691","originalAuthorName":"高海波"},{"authorName":"焦岳超","id":"d290079a-b9ce-4df5-a6ce-9506dd8b27e3","originalAuthorName":"焦岳超"},{"authorName":"李瑞","id":"53aca18d-fb6e-4440-93be-11ea8c47ded5","originalAuthorName":"李瑞"}],"doi":"","fpage":"1001","id":"56c709cc-4945-48d4-8a27-3b5c7c8d51d6","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a31e3f8d-d209-4b6c-9008-585513426ef7","keyword":"p","originalKeyword":"p型微晶硅"},{"id":"7b2daf39-44b1-402f-9a70-089a5c02298e","keyword":"退火","originalKeyword":"退火"},{"id":"d773f8b6-8f55-4742-82ca-dab35f631f46","keyword":"PECVD","originalKeyword":"PECVD"},{"id":"d2f6af4a-d65b-41ac-96eb-c5a66889d2b0","keyword":"化率","originalKeyword":"晶化率"},{"id":"afe0c59e-0e2a-4b7c-9804-26226e5707f0","keyword":"表面粗糙度","originalKeyword":"表面粗糙度"}],"language":"zh","publisherId":"gncl201106009","title":"退火对硼掺杂薄膜性能的影响","volume":"42","year":"2011"},{"abstractinfo":"采用等离子体辅助化学汽相沉积(PECVD)技术制备本征非薄膜,对p/i界面进行处理.在此基础上,制备P(μc-Si:H)薄膜与柔性太阳能电池.对P薄膜及太阳能电池的性能进行研究.结果表明:对p/i界面采用H等离子体处理,再引入一定厚度的成核层,可以成功得到高电导率的P窗口层,提高柔性太阳能电池的光伏特性.其中的成核层,不仅促进P层的生长,还可以起到界面缓冲层的作用.","authors":[{"authorName":"雷青松","id":"576aaaaa-415a-4f2a-9c13-f89fe0e2fb71","originalAuthorName":"雷青松"},{"authorName":"徐火希","id":"34212c36-23d9-42cc-8f44-15933eb9fb3e","originalAuthorName":"徐火希"},{"authorName":"王晓","id":"8e759abf-f231-4d95-897c-d059157ab06f","originalAuthorName":"王晓晶"},{"authorName":"季峰","id":"e415f5bc-5758-454a-8750-e08d7f4e6da3","originalAuthorName":"季峰"},{"authorName":"徐静平","id":"9186065f-b4ed-400c-a65f-7995f4704c8c","originalAuthorName":"徐静平"}],"doi":"","fpage":"1187","id":"d3277cea-ef03-4856-a5b2-79b4a6217fc9","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"964a2888-f458-47f7-8824-807398387c3a","keyword":"p","originalKeyword":"p型微晶硅"},{"id":"b72da42c-4058-48b4-be37-7f6f3d2507c6","keyword":"界面处理","originalKeyword":"界面处理"},{"id":"973be458-4055-4f1f-949c-688987e71ee2","keyword":"柔性太阳能电池","originalKeyword":"柔性太阳能电池"}],"language":"zh","publisherId":"rgjtxb98200805031","title":"P/I界面处理对a-Si:H柔性太阳能电池性能的影响","volume":"37","year":"2008"},{"abstractinfo":"本文讨论了P薄膜性能随硅烷浓度(SC)的变化.采用X射线衍射仪(XRD),拉曼光谱仪和傅立叶变换红外吸收光谱仪(FTIR)对薄膜的结构进行了表征.随硅烷浓度的增加,薄膜材料的生长速率和暗电导率(σd)逐渐增大,光学带隙逐渐降低.当硅烷浓度为2.0%时,基薄膜材料是以非为主并有散落的颗粒的非结构.当硅烷浓度为1.5%时,硼的掺杂效率最大,同时可观察到硼抑制薄膜化的现象.","authors":[{"authorName":"蔡宏琨","id":"1d35f335-da05-4c57-bdf7-e851ee4809bd","originalAuthorName":"蔡宏琨"},{"authorName":"张德贤","id":"7c30ca0f-878a-4dde-ba60-a8864b1617c4","originalAuthorName":"张德贤"},{"authorName":"冯凯","id":"861fde0a-8cbe-4790-9168-62e2c0bc9a54","originalAuthorName":"冯凯"},{"authorName":"齐龙茵","id":"f359e7b6-667b-4aa1-b598-327e46a8ca4e","originalAuthorName":"齐龙茵"},{"authorName":"王雅欣","id":"d53efb1c-ff84-4c8a-87dc-6b212eaf5a2d","originalAuthorName":"王雅欣"},{"authorName":"孙云","id":"7bc93af8-a52f-4cee-9904-72623da18d86","originalAuthorName":"孙云"}],"doi":"10.3969/j.issn.1000-985X.2006.05.005","fpage":"927","id":"e345d0be-80b8-412a-9f47-d6e746cc2781","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"36fe8f33-6424-4033-8bb9-3203a00306de","keyword":"太阳电池","originalKeyword":"太阳电池"},{"id":"47e102c8-779d-45d3-8492-c27ea4063980","keyword":"","originalKeyword":"微晶硅"},{"id":"ce89b396-959d-43ce-a56e-bdeba7250769","keyword":"非","originalKeyword":"非晶硅"}],"language":"zh","publisherId":"rgjtxb98200605005","title":"P薄膜材料性能的研究","volume":"35","year":"2006"},{"abstractinfo":"利用射频等离子体增强化学气相沉积(RF-PECVD)技术,以B2H6为掺杂剂,在玻璃衬底上制备了厚度为40nm左右的p薄膜.为获得高电导率高化率的薄膜,采用正交实验法对衬底温度、氢稀释比及硼烷掺杂比等主要沉积参数进行初步优化.Raman光谱和电导率测试结果表明:(1)在实验选取的参数范围内,衬底温度是影响薄膜暗电导率和化率的最主要因素,其次是氢稀释比,硼烷掺杂比的影响相对较小;(2)通过正交优化,获得了暗电导率为2.05S·cm-1、化率为86%的p薄膜.","authors":[{"authorName":"赵尚丽","id":"c9711c8b-09ad-4525-b374-d3a01da6a99b","originalAuthorName":"赵尚丽"},{"authorName":"杨仕娥","id":"5e34ee9c-0bc7-4ed6-a593-ce3b42ba1e85","originalAuthorName":"杨仕娥"},{"authorName":"张丽伟","id":"acfeab1d-b3c7-4cb3-b283-5db0bc8bc73d","originalAuthorName":"张丽伟"},{"authorName":"陈永生","id":"da7a8c84-6398-46ac-8b03-6d23f8bd3148","originalAuthorName":"陈永生"},{"authorName":"陈庆东","id":"a236d5c2-994e-4bd0-9d18-e9e51a80dfa3","originalAuthorName":"陈庆东"},{"authorName":"卢景霄","id":"5df5b131-4cc7-406c-aaf5-d00b84b7f6df","originalAuthorName":"卢景霄"}],"doi":"","fpage":"116","id":"8f3d87db-c3d9-49f0-ba71-b4abf636c16e","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d89b4b0b-c1db-4b60-a2a5-cffac38e256c","keyword":"RF-PECVD","originalKeyword":"RF-PECVD"},{"id":"20923e6f-5695-48a5-84ee-6148c25e2efc","keyword":"p薄膜","originalKeyword":"p型微晶硅薄膜"},{"id":"3f38cd54-606f-4f29-8baa-5eea4c14cf62","keyword":"暗电导率","originalKeyword":"暗电导率"},{"id":"54d31582-5342-4c3c-a3e6-9beb85ea7123","keyword":"化率","originalKeyword":"晶化率"}],"language":"zh","publisherId":"cldb200804029","title":"高电导率高化率p薄膜的制备","volume":"22","year":"2008"},{"abstractinfo":"采用VHF-PECVD技术沉积硼掺杂的P薄膜材料,在硅烷浓度(SC)为0.8%,反应气压93Pa时,随等离子体功率的增加,材料的化率和电导率先增大,后减小;薄膜的透过率随功率的增大而增加.将获得的P薄膜应用在薄膜太阳电池中,电池结构为glass/p-μc-Si:H/I-μc-Si:H/n-μc-Si:H/Al, 厚度约1μm,没有背反射电极的情况下,电池效率达到了7.32%(Voc=0.520V,Jsc=21.33mA/cm2,FF=64.74%).","authors":[{"authorName":"朱锋","id":"92041847-c328-4b11-84a4-3459497d2f5f","originalAuthorName":"朱锋"},{"authorName":"魏长春","id":"08968a41-3325-4645-bb9c-85c954497404","originalAuthorName":"魏长春"},{"authorName":"张晓丹","id":"ac3281d2-f59b-4e4d-b610-8a4aaae27aa9","originalAuthorName":"张晓丹"},{"authorName":"高艳涛","id":"e7ae41fb-72d7-40da-87c7-a85d482977c2","originalAuthorName":"高艳涛"},{"authorName":"孙建","id":"15066de7-5b8e-414e-8a33-7fd3778e8735","originalAuthorName":"孙建"},{"authorName":"王岩","id":"100450bb-2a92-4739-a13e-319092852bd7","originalAuthorName":"王岩"},{"authorName":"韩晓艳","id":"21c32200-afce-40de-affe-fc1e15328b75","originalAuthorName":"韩晓艳"},{"authorName":"赵颖","id":"0a9fdf49-5a43-4cc9-83de-1b0b2120bd69","originalAuthorName":"赵颖"},{"authorName":"耿新华","id":"114cdc46-631e-4c89-baa1-99942e297b40","originalAuthorName":"耿新华"}],"doi":"10.3969/j.issn.1007-4252.2005.04.006","fpage":"423","id":"908b3c25-aee0-4739-be0e-396fa0ec6360","issue":"4","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"bff5e433-3f1b-4445-9a8a-94e1281dc1aa","keyword":"VHF-PECVD","originalKeyword":"VHF-PECVD"},{"id":"1dbf448b-b0b4-40fa-929f-8eddc7fb65e0","keyword":"","originalKeyword":"微晶硅"},{"id":"c915361b-cee7-4aee-bc8b-6990ed3ebe7a","keyword":"太阳电池","originalKeyword":"太阳电池"}],"language":"zh","publisherId":"gnclyqjxb200504006","title":"P材料及在薄膜太阳电池上的应用","volume":"11","year":"2005"},{"abstractinfo":"相对于单晶和非来说,薄膜太阳电池具有更多的优势.高速沉积高效太阳电池已经成为当前研究的热点.综合介绍了p-i-n太阳电池的结构以及基本原理、研究现状和存在的问题,并对其发展前景进行了展望.","authors":[{"authorName":"李新利","id":"a76a1dd4-974a-4875-9950-643e8ab6d0a7","originalAuthorName":"李新利"},{"authorName":"卢景霄","id":"722f4e97-7e51-4d53-adc9-cc06b38d54da","originalAuthorName":"卢景霄"},{"authorName":"李瑞","id":"db2915fc-20a5-43fa-ada2-3a6207e0ee36","originalAuthorName":"李瑞"}],"doi":"","fpage":"746","id":"5fc03880-2477-4d5d-bf50-0105440f4a50","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"8503d5aa-0bbb-473d-a6c5-f0a50a6a5c87","keyword":"太阳能电池","originalKeyword":"太阳能电池"},{"id":"e2912002-48bd-405a-889d-c8bdb94b365e","keyword":"","originalKeyword":"微晶硅"},{"id":"0f944df1-c0a6-4be4-86c7-e9a83f80ba1c","keyword":"高速沉积","originalKeyword":"高速沉积"}],"language":"zh","publisherId":"gncl201005002","title":"p-i-n薄膜太阳电池研究进展","volume":"41","year":"2010"},{"abstractinfo":"在不锈钢柔性衬底上采用等离子体化学气相沉积(PECVD)方法制备了不同结构的n薄膜,测试了在其上生长的太阳电池的电学输出特性.发现太阳电池的开路电压随n层的硅烷浓度线形变化,短路电流密度则存在一个最优值,这与n层引起的本征层中的孵化层和结构演变有关.将优化后的n层应用于不锈钢柔性衬底的非/叠层太阳电池,获得了9.28%(AM0,1353W/m2)和11.26%(AM1.5,1000W/m2)的光电转换效率.","authors":[{"authorName":"刘成","id":"a711e32e-bf6e-425a-b4d3-48bfc8c09d68","originalAuthorName":"刘成"},{"authorName":"周丽华","id":"6d271b27-7139-43bf-8dc7-7270ba976382","originalAuthorName":"周丽华"},{"authorName":"叶晓军","id":"b8ab9154-c5ad-4b2a-8887-1fb6774a117e","originalAuthorName":"叶晓军"},{"authorName":"钱子勍","id":"ab3e6a06-f2e2-4cb5-b4c4-878aaaa7e484","originalAuthorName":"钱子勍"},{"authorName":"陈鸣波","id":"58d6b887-f527-4c78-8ef0-449a242149e9","originalAuthorName":"陈鸣波"}],"doi":"10.3969/j.issn.1007-4252.2011.02.006","fpage":"151","id":"dcb01452-086c-458d-897c-3d629b4ce535","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"d16e38df-8e88-414f-8b64-301d2f020e85","keyword":"柔性衬底","originalKeyword":"柔性衬底"},{"id":"2312f049-ff17-406e-9d3c-f14328025632","keyword":"薄膜","originalKeyword":"硅薄膜"},{"id":"868451a1-ec9e-4ec8-b7e1-6e1236463fe2","keyword":"太阳电池","originalKeyword":"微晶硅太阳电池"},{"id":"a9e3e1bf-57e6-429e-be1b-485bb33ea804","keyword":"非/叠层太阳电池","originalKeyword":"非晶硅/微晶硅叠层太阳电池"}],"language":"zh","publisherId":"gnclyqjxb201102006","title":"n层对柔性衬底太阳电池特性的影响","volume":"17","year":"2011"},{"abstractinfo":"采用美国宾州大学开发的AMPS(Analysis of Microelectronic and Photonic Structures)软件模拟了p/i界面缺陷态密度(Npt/i)和非孵化层厚度(d)对pin氢化(μc-Si:H)薄膜太阳电池性能的影响.结果表明:随着Npt/i的增大,电池的开路电压Voc和填充因子FF单调减小,短路电流Jsc基本不变;随着d的增大,Jsc和FF单调减小,Voc反而增大;Npt/i和d值的增大均会导致电池光电转换效率η下降.通过对电池内部的电场及能带的分析,对上述模拟结果进行了解释.","authors":[{"authorName":"苗丽燕","id":"2c3bf6d3-e007-4040-bf57-0ff716ae0642","originalAuthorName":"苗丽燕"},{"authorName":"杨仕娥","id":"8f25ea3d-792e-437e-b30c-9bb3e9553e38","originalAuthorName":"杨仕娥"},{"authorName":"李艳阳","id":"477029ad-b7c8-420f-ab5c-127d86694ed1","originalAuthorName":"李艳阳"},{"authorName":"陈永生","id":"ec124c5f-bb82-4ab2-b377-9f62c4172038","originalAuthorName":"陈永生"},{"authorName":"谷锦华","id":"190f26b3-e43a-45e9-9f91-ccf53825dbab","originalAuthorName":"谷锦华"},{"authorName":"卢景霄","id":"14df591a-9913-4fe0-bc06-75a1d8f6a459","originalAuthorName":"卢景霄"}],"doi":"","fpage":"599","id":"2e0fe22f-7256-41dc-9ca9-2eb94f567581","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"d9ef2bbb-788a-49c2-82ed-5a85e49965ea","keyword":"薄膜电池","originalKeyword":"微晶硅薄膜电池"},{"id":"a78feeee-962b-431b-a4ee-67aab4552254","keyword":"p/i界面","originalKeyword":"p/i界面"},{"id":"e72ecfc5-82cf-4484-8898-02e8d466f299","keyword":"光电转换效率","originalKeyword":"光电转换效率"}],"language":"zh","publisherId":"rgjtxb98201103012","title":"数值模拟p/i界面对薄膜太阳电池性能的影响","volume":"40","year":"2011"},{"abstractinfo":"以高氢稀释的硅烷(SiH4)为反应气体,硼烷(B2H6)为掺杂气体,利用RF-PECVD方法,在玻璃衬底上制备出掺硼的氢化非(a-Si∶H)薄膜,研究了硼掺杂量对氢化非(a-Si∶H)薄膜的光学性能的影响.利用NKD-7000W光学薄膜分析系统测试薄膜的透射谱和反射谱,并利用该系统的软件拟合得出薄膜的折射率、消光系数、吸收系数等光学性能参数,利用Tauc法计算掺硼的非薄膜的光学带隙.实验结果表明,随着硼掺杂量的增加,掺杂非薄膜样品在同一波长处的折射率先增大后减小,而且每一样品均随着入射光波长的增加而减小,在波长500 nm处的折射率均达到4.3以上;薄膜的消光系数和吸收系数随着硼掺杂量的增大而增大,在500 nm处的吸收系数可高达1.5×105 cm-1.在实验的硼掺杂范围内,光学带隙从1.81 eV变化到1.71 eV.","authors":[{"authorName":"夏冬林","id":"fe517398-28f9-4dbf-8ce9-4aacffcd4e86","originalAuthorName":"夏冬林"},{"authorName":"王慧芳","id":"369ee5ff-08de-4ee6-8b19-0d19df09b86e","originalAuthorName":"王慧芳"},{"authorName":"石正忠","id":"08bb30e3-55ce-4e38-be42-327c56d1d82b","originalAuthorName":"石正忠"},{"authorName":"张兴良","id":"880441df-b29e-4bde-9153-4cecd32c41c9","originalAuthorName":"张兴良"},{"authorName":"刘俊","id":"6efa9abe-6e82-47c3-88dd-cccf7b22f734","originalAuthorName":"刘俊"}],"doi":"","fpage":"296","id":"a160fab6-548b-4bf4-8b87-ae09e4e9ae16","issue":"4","journal":{"abbrevTitle":"YXKXYGHX","coverImgSrc":"journal/img/cover/YXKXYGHX.jpg","id":"74","issnPpub":"1674-0475","publisherId":"YXKXYGHX","title":"影像科学与光化学 "},"keywords":[{"id":"192e1255-83c4-4750-860d-60c8a0f126f1","keyword":"RF-等离子体增强化学气相沉积方法","originalKeyword":"RF-等离子体增强化学气相沉积方法"},{"id":"3ff0fd16-febc-4de8-9dc3-0a688c868661","keyword":"非薄膜","originalKeyword":"非晶硅薄膜"},{"id":"f53c2601-fae8-4a2b-881a-e27805bc0a4b","keyword":"折射率","originalKeyword":"折射率"},{"id":"27c90ba1-c296-4295-a5cc-4bd9d7878322","keyword":"消光系数","originalKeyword":"消光系数"},{"id":"95d6a2b1-bdca-4077-87b2-2f12ccffc999","keyword":"吸收系数","originalKeyword":"吸收系数"},{"id":"027a61c7-f244-4182-ac5a-dc590b379df3","keyword":"光学带隙","originalKeyword":"光学带隙"}],"language":"zh","publisherId":"ggkxyghx201004008","title":"掺硼p薄膜的制备及光学性能的表征","volume":"28","year":"2010"},{"abstractinfo":"用电子回旋共振等离子体增强化学气相沉积(ECR-PECVD)的方法制备了磷掺杂薄膜材料.通过Hall,Raman光谱和XRD的测试分析,研究了衬底温度和磷烷流量对掺杂薄膜组织结构和电学性能的影响.根据AFM照片分析了薄膜的表面形貌,进而推测了薄膜的内部组成.实验发现:衬底温度在250 ℃时,磷烷的加入会大大降低薄膜的化率.衬底温度提高到350 ℃后这种影响明显下降.薄膜的载流子浓度和电导率受薄膜化率影响明显,衬底温度的升高对薄膜电学性能提高有较大帮助.","authors":[{"authorName":"张学宇","id":"5ee263a0-5387-4018-b6cd-4fe9d164701c","originalAuthorName":"张学宇"},{"authorName":"吴爱民","id":"e68ad4c5-6e3e-4af7-9040-1091f59c058a","originalAuthorName":"吴爱民"},{"authorName":"冯煜东","id":"212cff37-e914-4dca-b3a0-dc9f50c3ac76","originalAuthorName":"冯煜东"},{"authorName":"胡娟","id":"7fd730b3-1716-4d8f-893f-970900004ce5","originalAuthorName":"胡娟"},{"authorName":"岳红云","id":"92ea2149-8022-42bd-b012-c9298c088d16","originalAuthorName":"岳红云"},{"authorName":"闻立时","id":"42eb229e-9ad1-4a66-9cac-e68e5a253071","originalAuthorName":"闻立时"}],"doi":"","fpage":"852","id":"adfcae1e-4f37-478f-82b0-511b56d5e37a","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"7a3e24ee-0a78-4b49-8bb9-7416f45fe6e8","keyword":"ECR-PECVD","originalKeyword":"ECR-PECVD"},{"id":"c948f51d-fbce-4bb8-911f-abd2542154c6","keyword":"磷掺杂","originalKeyword":"磷掺杂"},{"id":"60a93b3b-4a4c-42d6-8b56-97a39f07ee5a","keyword":"薄膜","originalKeyword":"微晶硅薄膜"},{"id":"493b2286-e6d0-4563-839d-e57dccdaa720","keyword":"霍尔测量","originalKeyword":"霍尔测量"}],"language":"zh","publisherId":"rgjtxb98201004006","title":"ECR-PECVD制备n薄膜的研究","volume":"39","year":"2010"}],"totalpage":6012,"totalrecord":60116}