{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用激光粒度分析仪对粉煤灰提取后的工业废物硅酸钙样品进行分析,结果表明硅酸钙样品的平均粒径在35.36 μm,分选性极好,样品频率曲线形态近似正态分布,峰态呈中等峰态.采用扫描电镜和X-射线能谱对硅酸钙样品表面进行分析,结果表明硅酸钙粒径大小不一、表面疏松多孔,由Ca、Si、O、C元素组成.设计正交实验研究了pH、反应温度、硅酸钙投加量以及六价铬溶液初始浓度对于反应去除率的影响,结果表明影响顺序为硅酸钙投加量>溶液浓度>反应温度> pH,反应在pH =6,反应温度30℃,硅酸钙投加量为30g/L,溶液浓度为1 mg/L的条件下取得最大去除率,六价铬去除率为16.51%.等温吸附实验结果表明Langmuir和Freundlich等温吸附模型均有较好模拟,硅酸钙对Cr6+的最大吸附容量为0.351 mg/g.","authors":[{"authorName":"秦泽敏","id":"d6060035-1490-45a3-8360-86b314e03a04","originalAuthorName":"秦泽敏"},{"authorName":"董黎明","id":"5a218a03-44e5-48fa-b4bb-4b3657b7779a","originalAuthorName":"董黎明"},{"authorName":"张艳萍","id":"bad42ed9-b9d4-4c2e-9480-4383215629cc","originalAuthorName":"张艳萍"},{"authorName":"赵钰","id":"27e6e594-a178-4391-8622-a05863f732fc","originalAuthorName":"赵钰"},{"authorName":"周恋彤","id":"d8d89d0c-4588-47e4-9861-a29ec0cd19fd","originalAuthorName":"周恋彤"}],"doi":"","fpage":"2828","id":"b3a82e99-4835-46f9-a5ac-8bea8ce62403","issue":"11","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"111e8d44-52f3-417c-93ce-95d2cdf75c92","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"dfb87e89-7db0-4f8d-a37e-656d2cc87184","keyword":"粒径","originalKeyword":"粒径"},{"id":"416bdf43-cca6-404c-9d5b-c7aaaf038855","keyword":"六价铬","originalKeyword":"六价铬"},{"id":"0c23d4b6-e5ab-451d-a831-bc1f38266e22","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"gsytb201411011","title":"硅酸钙粒径分析及吸附去除水中六价铬的研究","volume":"33","year":"2014"},{"abstractinfo":"采用超音速气流粉碎法进行硅酸钙的超细粉碎,借助激光粒度仪和TEM进行超细粒子粒径和形貌表征.得到了平均粒径1.1μm、粒径分布0.4~3μm、粒子大小形状基本一致的超细硅酸钙样品.研究表明,气流粉碎后的超细粒子易于形成软团聚,但在应用时容易分散.\n","authors":[{"authorName":"曾贵玉","id":"1d5d8b22-54f2-48d6-bc3d-6440f610f32e","originalAuthorName":"曾贵玉"},{"authorName":"聂福德","id":"1c87d9ae-c511-4398-b715-9506b1187ef8","originalAuthorName":"聂福德"},{"authorName":"刘晓东","id":"47d3bba3-6240-41e8-a2bb-59d4dc69031a","originalAuthorName":"刘晓东"},{"authorName":"姜凯","id":"65d1914f-a460-4fba-ad71-16c6fb0ad21c","originalAuthorName":"姜凯"},{"authorName":"孟力","id":"51aa434b-58e1-4d4e-a43b-0a131f9d2735","originalAuthorName":"孟力"},{"authorName":"姚宏","id":"9950b60c-22ea-4a44-81a2-e3d363cc1a85","originalAuthorName":"姚宏"}],"doi":"10.3969/j.issn.1673-2812.2001.04.018","fpage":"80","id":"5e852f76-d752-4124-bbf5-f7bcfbfa8776","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"3f52b541-9c8b-4557-9d0f-cec27a7c0ec8","keyword":"气流粉碎","originalKeyword":"气流粉碎"},{"id":"016a819b-24f0-47eb-bc1a-ac79b9d2ae29","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"74cb9419-f2dd-4529-bd1d-b1b2f9c1fb44","keyword":"超细粒子","originalKeyword":"超细粒子"},{"id":"3a27e921-b9b6-4d98-a506-9dacdaf3d250","keyword":"粒径","originalKeyword":"粒径"}],"language":"zh","publisherId":"clkxygc200104018","title":"气流粉碎法制备超细硅酸钙粒子的研究","volume":"19","year":"2001"},{"abstractinfo":"将柿竹园铅锌矿破碎球磨,进行煅烧、除硫,经浓盐酸酸洗、过滤,实现了有价元素与其他元素的分离,通过控制不同的pH值,分别得到铁和铅锌的氢氧化物,再往滤液中加入NH4HCO3,钙以CaCO3的形式沉淀出来,将所得的碳酸钙经硝酸溶解后,加入适量的硅酸钠,并用聚乙二醇作为分散剂,制得硅酸钙粉体.并对制各的溶液和滤渣进行了表征,研究了焙烧物料的数量和金属的离子价态对产物纯度和回收率的影响.本试验通过控制适宜的工艺条件,使铁和钙的浸出率分别达到83.2%和67.7%,工艺简便,成本较低,实现了矿产资源的综合利用.","authors":[{"authorName":"毕松梅","id":"054d946e-e585-4cb5-bc6e-a381df2f4ec3","originalAuthorName":"毕松梅"},{"authorName":"徐利华","id":"b68d3c5e-b0ea-4e00-b02d-4d0ae790bad5","originalAuthorName":"徐利华"},{"authorName":"连芳","id":"cfe1b160-f68c-497a-9f48-a03978927d95","originalAuthorName":"连芳"},{"authorName":"毕玉保","id":"ca1f1082-69cf-40ec-a65b-454d4b894127","originalAuthorName":"毕玉保"}],"doi":"","fpage":"316","id":"b4d36e56-3bb6-4bba-b1b8-d317ed7c3354","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"273e9f36-2491-4c56-9b9d-32fd81aebfdb","keyword":"铅锌矿","originalKeyword":"铅锌矿"},{"id":"2d7b415d-6f0f-4ba7-974c-75555f3d96dd","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"99a1670f-681b-47eb-bd1f-1f6dd0972936","keyword":"高温结构材料","originalKeyword":"高温结构材料"},{"id":"ed2ebfb4-7051-4d5d-980e-1bb30d709098","keyword":"湿化学法","originalKeyword":"湿化学法"}],"language":"zh","publisherId":"xyjsclygc2008z2082","title":"柿竹园铅锌尾矿湿化学法合成硅酸钙粉末","volume":"37","year":"2008"},{"abstractinfo":"以Ca(NO3)2·4H2O和Na2SiO3·9H2O为原料,聚乙二醇为分散剂,采用化学沉淀方法制备了直径40nm的无定型纳米硅酸钙粉末,800℃热处理后得到平均直径100nm的β-硅灰石粉末.把两种粉末压制成块浸泡在模拟体液中,研究了两种粉体在模拟体液中的生物活性行为.结果表明:由于无定型硅酸钙具有比β-硅灰石小的颗粒尺寸,且处于亚稳态,Ca2+的活性较大,无定型硅酸钙具有比β-硅灰石较高的生物活性.在无定型硅酸钙表面不仅沉积了羟基磷灰石,而且也沉积了碳酸钙,以致于在浸泡初期阶段阻止了羟基磷灰石的沉积.经长时间浸泡后,无定型硅酸钙和β-硅灰石表面都能沉积一层羟基磷灰石.","authors":[{"authorName":"万祥辉","id":"5d07dfcb-1f23-4907-8b8a-99cf2787037c","originalAuthorName":"万祥辉"},{"authorName":"常程康","id":"1fad65bf-3d85-4486-b745-5736223fc3cd","originalAuthorName":"常程康"},{"authorName":"毛大立","id":"cf111e18-e443-4247-b878-4fc61991ae82","originalAuthorName":"毛大立"}],"doi":"10.3969/j.issn.1673-2812.2005.02.020","fpage":"230","id":"08f29c15-7c0d-4fdb-a499-4baa0364aff8","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"d7cc11b2-43ce-4dbf-960c-583fe1f51fda","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"902cbb4e-336a-4827-a205-953fee5a8aa7","keyword":"纳米粉体","originalKeyword":"纳米粉体"},{"id":"2e49759c-b6f5-463d-9f01-f6dde96f7cf6","keyword":"化学沉淀法","originalKeyword":"化学沉淀法"},{"id":"c4e7494e-a418-4afd-b09d-f59461684313","keyword":"生物活性","originalKeyword":"生物活性"}],"language":"zh","publisherId":"clkxygc200502020","title":"化学沉淀法制备纳米硅酸钙及其在模拟体液中的活性行为","volume":"23","year":"2005"},{"abstractinfo":"以硝酸钙和硅酸钠为原料,采用化学共沉淀法合成了适合作为生物材料的硅酸钙粉体,并利用放电等离子体烧结工艺(Spark Plasma Sintering)烧结硅酸钙陶瓷(常温相为β相).为了探讨合适的烧结工艺参数,分别采用了不同的烧结温度(850~1 000 ℃),不同的保温时间(1~10 min)和不同的加载压力(20~50 MPa)进行烧结.测了这一系列不同烧结工艺参数下得到的块体的抗弯强度、硬度、断裂韧性等力学性能.结果表明,在950 ℃可以制得很致密的硅酸钙材料,其力学性能比其它方法得到的材料大为提高.延长保温时间及增加烧结压力,抗弯强度和硬度均在一定范围内增加,而断裂韧性则呈现相反趋势,因此,要根据材料的应用需要来确定最佳工艺参数.","authors":[{"authorName":"赵嵩珏","id":"eac830d0-da64-4956-9402-b7a02243b9ff","originalAuthorName":"赵嵩珏"},{"authorName":"王连军","id":"f225a36f-baa9-426f-a912-2e5315461fd6","originalAuthorName":"王连军"},{"authorName":"江莞","id":"a67561b9-c05f-4f0e-a5c1-f4199bdfeaf7","originalAuthorName":"江莞"},{"authorName":"陈立东","id":"d9a2b27a-121c-4255-9ec5-01f331cbae0e","originalAuthorName":"陈立东"}],"doi":"","fpage":"354","id":"438867bc-6b1f-4c3e-9c4d-84b010796b0c","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"44f07e9a-705f-41ba-b844-ed02ec4ddaba","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"43a128ed-4759-423c-9392-a36b27e39e76","keyword":"SPS","originalKeyword":"SPS"},{"id":"fb36a132-8e00-4056-9333-66536abade09","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"xyjsclygc2007z1104","title":"硅酸钙陶瓷的SPS烧结及其力学性能","volume":"36","year":"2007"},{"abstractinfo":"阐述了白炭黑的结构、性质和表面改性的作用、改性机理,以及比较白炭黑与单分散二氧化硅粒子补强橡胶的差异.凹凸棒粘土是一种具有层链状结构的水合硅酸铝镁晶体,表面呈棒状或纤维状,经过偶联改性后,对橡胶有良好的补强效果.硅酸钙是耐低温氟醚橡胶较理想的补强材料.硅气凝胶可作为高性能橡胶的补强剂.","authors":[{"authorName":"戴俊","id":"70ad458a-8af3-4f11-a73e-c5325e390d1e","originalAuthorName":"戴俊"}],"doi":"10.3969/j.issn.1671-5381.2005.02.010","fpage":"44","id":"69a5a942-bc39-496c-933b-e659f412e526","issue":"2","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"def733ca-f7be-42d5-8c1a-60d5a7ce353b","keyword":"硅酸盐","originalKeyword":"硅酸盐"},{"id":"baf28624-a98c-4c68-ba28-ed4440ac3fb2","keyword":"白炭黑","originalKeyword":"白炭黑"},{"id":"01919be6-5bb7-472b-af6f-8bda56705a54","keyword":"单分散二氧化硅粒子","originalKeyword":"单分散二氧化硅粒子"},{"id":"dbe6d23d-b91e-48f4-b852-19141f692339","keyword":"凹凸棒粘土","originalKeyword":"凹凸棒粘土"},{"id":"3f20b2d6-43ef-45dd-9a57-08d80fcdc1ec","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"87ad0936-52ea-4cc5-8c4d-a34f8f64718b","keyword":"硅气凝胶","originalKeyword":"硅气凝胶"},{"id":"243d9118-2707-4a93-8c3e-80813b579911","keyword":"补强剂","originalKeyword":"补强剂"},{"id":"88a967b5-2456-49aa-bdb4-5dacd0f242c4","keyword":"纳米粒子链","originalKeyword":"纳米粒子链"}],"language":"zh","publisherId":"hccllhyyy200502010","title":"硅酸盐在橡胶补强中的应用","volume":"34","year":"2005"},{"abstractinfo":"调湿材料是一种重要的健康环保材料.本工作以硅藻土(DE)和重质碳酸钙(GCC)为原料,用焙烧法制备了硅藻土/重质碳酸钙复合调湿材料(DE/GCC).采用X射线衍射仪、傅里叶变换红外光谱仪、场发射扫描电子显微镜和低温氮吸附法对样品的物相、表面官能团、微观形貌、表面元素组成和孔结构特性进行了表征,在恒温高湿度环境(RH=70%、80%、90%;30℃)下测试了样品的吸湿性能,并进行吸湿动力学和吸湿机理分析.结果表明,焙烧法制备的DE/GCC中生成了硅酸钙和氢氧钙石,DE/GCC的介孔含量增多,易于形成毛细管凝聚.在相对湿度为70%、80%和90%恒温高湿度环境下,DE/GCC的36 h吸湿量分别达到7.213%、11.159%和14.701%,分别提高到DE的2.1、2.9和3.0倍.吸湿过程动力学符合准二级动力学模型.","authors":[{"authorName":"胡志波","id":"e77becac-7a8e-4baa-8ccd-8392642fee7d","originalAuthorName":"胡志波"},{"authorName":"演阳","id":"5d039a51-2ef5-4444-b074-cb88b83191cf","originalAuthorName":"演阳"},{"authorName":"郑水林","id":"7d568df6-d319-4e84-8b0c-aab4fbabc1de","originalAuthorName":"郑水林"},{"authorName":"孙青","id":"81cc62cf-1be2-47e2-b029-84ed7d55132d","originalAuthorName":"孙青"},{"authorName":"尹胜男","id":"2f8e8d7d-b28c-409d-9d1e-f4faf573d117","originalAuthorName":"尹胜男"}],"doi":"10.15541/jim20150287","fpage":"81","id":"d1c407b9-24c4-4c5a-b5c9-5da5aa2bd996","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"98160921-6dbb-4fcc-86d7-a8b7484e6302","keyword":"硅藻土","originalKeyword":"硅藻土"},{"id":"8af2d9d7-ed11-426c-bdaf-04df7668c852","keyword":"重质碳酸钙","originalKeyword":"重质碳酸钙"},{"id":"0261f211-0924-4589-9998-ab022b900627","keyword":"调湿材料","originalKeyword":"调湿材料"},{"id":"e92aed61-7e38-4ac5-a24d-bb1a9d2c9518","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"b715d2ae-3be3-4143-836d-cc7def963fbd","keyword":"氢氧钙石","originalKeyword":"氢氧钙石"}],"language":"zh","publisherId":"wjclxb201601014","title":"硅藻土/重质碳酸钙复合调湿材料的制备及表征","volume":"31","year":"2016"},{"abstractinfo":"20世纪的40多年间石棉水泥(AC)是中国唯一的FRC品种.近20年来先后研发成功多种非石棉的纤维强水泥(FRC),主要有抗碱玻璃纤维增强低碱度水泥(GRLC)、维纶纤维增强水泥(vRC)、纤维素纤维增强硅酸钙以及高压挤制FRC条板等.这些新型FRC制品不仅在材性上与AC制品相近甚或优于AC制品,而且应用范围正在日益扩大.","authors":[{"authorName":"沈荣熹","id":"b17e68a5-3371-41d5-a843-91e5a0bb4a19","originalAuthorName":"沈荣熹"}],"doi":"10.3969/j.issn.1001-1625.2005.05.010","fpage":"55","id":"de81eb61-1af3-4975-bc37-be845b8b1215","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"db8aa017-6ada-4fe9-bb65-e6e545b72737","keyword":"纤维增强体","originalKeyword":"纤维增强体"},{"id":"13ca7c5d-4678-4cb3-bd8b-f8e20b35f7d1","keyword":"水泥基体","originalKeyword":"水泥基体"},{"id":"49773eef-f975-4286-b14c-8a46ef2fe877","keyword":"纤维增强水泥","originalKeyword":"纤维增强水泥"},{"id":"2f60d71f-74b4-48bd-bba7-cbd1409da28b","keyword":"石棉","originalKeyword":"石棉"},{"id":"12da97f6-244b-4da9-8de0-78fb034b2ad9","keyword":"抗碱玻璃纤维","originalKeyword":"抗碱玻璃纤维"},{"id":"067f5383-8f42-478e-8d8e-f3278c145640","keyword":"维纶纤维","originalKeyword":"维纶纤维"},{"id":"52dfde32-953d-4e74-9844-57d11cfcdd7b","keyword":"纤维素纤维","originalKeyword":"纤维素纤维"},{"id":"de69b71c-f1e8-4e6e-bc6f-e33d602494da","keyword":"硅酸钙","originalKeyword":"硅酸钙"},{"id":"cc5d6590-0cd5-4b27-876b-01d17f9a7836","keyword":"高压挤制法","originalKeyword":"高压挤制法"}],"language":"zh","publisherId":"gsytb200505010","title":"中国纤维增强水泥复合材料的新进展","volume":"24","year":"2005"},{"abstractinfo":"水硬性硅酸钙具有良好的生物活性、细胞黏附性和优异的骨传导性能,在生物医学领域有着广泛的应用.本文从水硬性硅酸钙的应用、制备方法和生物活性机理方面介绍了水硬性硅酸钙的最新研究进展.","authors":[{"authorName":"林青","id":"0ee81bfb-05b7-4ea7-ac20-bf96b5dda578","originalAuthorName":"林青"},{"authorName":"李延报","id":"059513f5-4753-483d-9a83-d5f1a40b7773","originalAuthorName":"李延报"},{"authorName":"兰祥辉","id":"0a6e88e5-83fa-4fdf-a188-cecf3ddf5cb7","originalAuthorName":"兰祥辉"},{"authorName":"陆春华","id":"dce64da4-80bc-4394-9071-d40da7b4e3d2","originalAuthorName":"陆春华"},{"authorName":"许仲梓","id":"02e19e7e-1a59-4351-aedd-28d998439ea7","originalAuthorName":"许仲梓"}],"doi":"","fpage":"556","id":"67de0c44-58df-4db9-be73-3482344415fa","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"b73f7474-18bb-44c1-9015-56ba2a32285b","keyword":"水硬性硅酸钙","originalKeyword":"水硬性硅酸钙"},{"id":"8bd949c6-e644-4714-9d7e-3317580150d5","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"3dab236c-d20d-4a43-874e-5b90e13d4ce6","keyword":"生物活性","originalKeyword":"生物活性"}],"language":"zh","publisherId":"gsytb200803024","title":"水硬性硅酸钙生物材料的研究","volume":"27","year":"2008"},{"abstractinfo":"通过TGA/DSC、XRD、FTIR、SEM等测试手段,对高铝粉煤灰提取氧化铝副产物-活性硅酸钙在各温度区间的相变历程进行系统研究.TGA/DSC结果表明活性硅酸钙结构中有5个结晶水,160℃时开始逐渐失去结晶水,600℃前结晶水脱除完毕,672℃时部分Si-O-H键断裂,失去羟基.XRD和FTIR结果表明700℃时活性硅酸钙结构已破坏,衍射峰消失,转变为无定形的非晶态;700~800℃时发生晶型转变,结构开始转变为有序的硅灰石晶体结构;1 100℃时完全转变为低温型2M型硅灰石结构;1300℃时完全转变为高温型假硅灰石结构.活性硅酸钙的高温相变经历了“活性硅酸钙→脱水硅酸钙→脱羟基硅酸钙→2M型硅灰石→假硅灰石”的转变历程.","authors":[{"authorName":"洪景南","id":"67ad0336-e6a6-4fd7-87e0-25318e616a1e","originalAuthorName":"洪景南"},{"authorName":"孙俊民","id":"572afc3f-ad88-48a0-b430-0f7c61417327","originalAuthorName":"孙俊民"},{"authorName":"许学斌","id":"05db612b-8dd6-4649-8c62-348f6c8fb47a","originalAuthorName":"许学斌"},{"authorName":"杨会宾","id":"00225384-be60-4eed-836e-4c7a4aeee8ea","originalAuthorName":"杨会宾"},{"authorName":"李运改","id":"36ae1d12-2336-409f-935f-2c2d523272a6","originalAuthorName":"李运改"}],"doi":"","fpage":"736","id":"f28dc31c-8b5c-45ae-8cfa-753fc4d47358","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"b04937f0-e0c4-4a95-9242-0ac8793f60de","keyword":"活性硅酸钙","originalKeyword":"活性硅酸钙"},{"id":"06621dd5-6b10-461f-ba69-5e8efbc2c63e","keyword":"高温相变","originalKeyword":"高温相变"},{"id":"9775b0cd-24fc-4c87-a92a-92ab9fb1c95e","keyword":"硅灰石","originalKeyword":"硅灰石"},{"id":"a3a096a5-3139-4076-9bed-c700fd05da2d","keyword":"假硅灰石","originalKeyword":"假硅灰石"}],"language":"zh","publisherId":"gsytb201603013","title":"活性硅酸钙高温相变历程研究","volume":"35","year":"2016"}],"totalpage":679,"totalrecord":6787}