{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"报导了一种由正庚烷辅助高能球磨引起GdCo5合金的歧化,以及随后的脱氢和再化合反应.在正庚烷中球磨400 min,部分GdCo5相发生歧化反应,生成Gd的氢化物GdH2+δ和单质Co.随后在真空中加热到800℃,GdH2+δ脱去H原子与Co重新化合生Gd2Co17.Gd2Co17是面各向异性,但最终产物中还有未歧化的GdCo5相,样品具有460 kA/m的矫顽力.球磨更长时间(600、800、1 000 min)以上,GdCo5合金的完全歧化,脱氢后的产物中除了Gd2Co17又出现了α-Co和GdCoC2相.由于没有了GdCo5相,产物矫顽力几乎为零.H原子和C原子来源于正庚烷的分解.","authors":[{"authorName":"冯雪原","id":"55b47875-6301-4f29-be42-f02af8c72f67","originalAuthorName":"冯雪原"},{"authorName":"耿红民","id":"95acce8b-9770-45a3-9a24-8ea44352c7c0","originalAuthorName":"耿红民"},{"authorName":"郜宇超","id":"545afd29-16db-4554-991f-058597cc2a90","originalAuthorName":"郜宇超"},{"authorName":"杜晓波","id":"34313bb3-cdb7-4cb1-b1bb-6b145632722e","originalAuthorName":"杜晓波"},{"authorName":"闫羽","id":"431b14f8-fc5c-42e7-aa6d-80713b4fc9c5","originalAuthorName":"闫羽"},{"authorName":"王文全","id":"22ac494d-e931-41d6-bfd7-eb80cb782ad0","originalAuthorName":"王文全"},{"authorName":"苏峰","id":"381470a5-2a76-4133-8a46-3beae3c98289","originalAuthorName":"苏峰"}],"doi":"10.13228/j.boyuan.issn1005-8192.2016032","fpage":"40","id":"dd094ee4-c297-42ec-add6-0a137165a785","issue":"4","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"fdcbb417-cb34-41ad-bc77-d22736ce3516","keyword":"稀土永磁材料","originalKeyword":"稀土永磁材料"},{"id":"c71caa58-967d-406b-b2f3-552ceaf2271a","keyword":"高能球磨","originalKeyword":"高能球磨"},{"id":"75d5cc07-b7c1-435b-a862-3f7273aecea0","keyword":"歧化","originalKeyword":"歧化"},{"id":"40ab497c-f85b-4085-bd35-a2f8da9888de","keyword":"永磁特性","originalKeyword":"永磁特性"}],"language":"zh","publisherId":"jsgncl201604007","title":"正庚烷辅助高能球磨引起的GdCo5合金的歧化、脱氢及再结合反应","volume":"23","year":"2016"},{"abstractinfo":"将具有负宇称的 fp 空间扩大到包含1g9/2 轨道, 采用修正的表面相互作用(MSDI), 对64Ge, 66Ge, 68Ge, 70Se, 72Se, 74Se, 76Kr 和 78Kr等偶偶核作了形变Hartree-Fock计算, 得到了基态和一些激发态的解. 同时, 还用近似角动量投影形变Hartree-Fock(PDHF)方法对偶偶核64Ge, 74Se和奇A核79Kr进行了能谱计算, 得到其正、负宇称带的解, 计算结果与实验谱基本一致.","authors":[{"authorName":"徐延冰","id":"b1aeaa3f-d49e-4faa-b5c2-14d575021e7a","originalAuthorName":"徐延冰"}],"doi":"10.3969/j.issn.1007-4627.2004.01.002","fpage":"6","id":"3d804ba2-a11b-4d98-b76a-e37dcc73a053","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"3c3761e3-ccf3-4809-86d9-25135f7d42e0","keyword":"形变Hartree-Fock态","originalKeyword":"形变Hartree-Fock态"},{"id":"1432f8a8-2714-44ab-8011-bf4d80e7029c","keyword":"角动量投影","originalKeyword":"角动量投影"},{"id":"ed3d33ae-e94a-4a28-ab9a-4dc4a49250a9","keyword":"单粒子能谱","originalKeyword":"单粒子能谱"},{"id":"aebc8a5b-b795-4038-9aaf-a485915d7835","keyword":"反常宇称态","originalKeyword":"反常宇称态"}],"language":"zh","publisherId":"yzhwlpl200401002","title":"原子核的反常宇称能谱研究","volume":"21","year":"2004"},{"abstractinfo":"将具有正宇称的gds组态空间扩大到包含具有负宇称的1h11/2轨道, 采用修正的表面δ相互作用(MSDI)对101Pd和101Ru两个奇A 核进行了形变HF计算, 得到了基态和一些激发态的解. 同时, 还用近似角动量投影形变Hartree-Fock(PDHF)方法对101Pd和101Ru进行了能谱计算, 得到其正、负宇称带的解, 计算结果与实验谱基本一致.","authors":[{"authorName":"徐延冰","id":"1b3ba6c1-1a0a-40d8-8d0e-634c29ad7ad3","originalAuthorName":"徐延冰"}],"doi":"10.3969/j.issn.1007-4627.2003.03.003","fpage":"182","id":"8ca98726-f9ca-4b95-a219-e8c108fbc41b","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"ea28bceb-8a87-4ceb-a831-8675db84565c","keyword":"角动量投影","originalKeyword":"角动量投影"},{"id":"41e3bba1-73a3-43b6-8267-e18bda970894","keyword":"单粒子能谱","originalKeyword":"单粒子能谱"},{"id":"c5c9cb2d-cbfb-46ab-8403-666a47a2276d","keyword":"负宇称带","originalKeyword":"负宇称带"}],"language":"zh","publisherId":"yzhwlpl200303003","title":"奇A核101Pd和101Ru的负宇称带能谱研究","volume":"20","year":"2003"},{"abstractinfo":"分别利用单胶子交换和单π交换夸克模型计算了核子负宇称激发态的电磁跃迁振幅, 讨论了两个模型所给出的不同的组态混合角.结果表明,单胶子交换模型所给出的重子波函数比单π交换夸克模型的波函数更为合理.","authors":[{"authorName":"董宇兵","id":"83ccf7c3-5aa4-4ac7-9522-e880eef67f74","originalAuthorName":"董宇兵"},{"authorName":"何军","id":"a80d2e96-ebcc-41e0-a019-3bf8b76e9153","originalAuthorName":"何军"}],"doi":"10.3969/j.issn.1007-4627.2004.02.023","fpage":"157","id":"e1fe2c51-b3cd-4c86-89e8-4ee665f93740","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"a63ab8b9-3465-4019-92af-021ca69cedbc","keyword":"组份夸克模型","originalKeyword":"组份夸克模型"},{"id":"a60932b0-1801-4191-91e0-fd4a7483cb8f","keyword":"组态混合","originalKeyword":"组态混合"},{"id":"78c8f132-1bf4-487f-9660-41c2958cb36f","keyword":"跃迁振幅","originalKeyword":"跃迁振幅"}],"language":"zh","publisherId":"yzhwlpl200402023","title":"单胶子交换和单π交换夸克模型中核子负宇称共振态的电磁跃迁振幅","volume":"21","year":"2004"},{"abstractinfo":"简要介绍了纳米超分子化学的产生、发展及应用,重点综述了:①超分子纳米材料的合成及应用;②新型超分子纳米材料制备的新方法及其应用;③新型超分子纳米材料的合成及在医药学方面的应用.并对纳米超分子化学的发展进行了展望.","authors":[{"authorName":"张来新","id":"1bf4243b-ccd2-47fd-b23a-5540e6a777ff","originalAuthorName":"张来新"},{"authorName":"胡小兵","id":"97e18d71-e53a-40fc-a9d6-dd1e286793b7","originalAuthorName":"胡小兵"}],"doi":"","fpage":"101","id":"69d8a2b5-8444-4b42-8fca-d0e9d1eb740e","issue":"5","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"28f66b3b-cfb1-4f09-aa27-d05672febe6f","keyword":"纳米超分子化学","originalKeyword":"纳米超分子化学"},{"id":"2cf6653f-9066-473a-898f-5c0c30d75dcb","keyword":"合成","originalKeyword":"合成"},{"id":"f6363cbf-24b8-4e3b-b99a-ee0519e72aff","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"hccllhyyy201505023","title":"纳米超分子化学","volume":"44","year":"2015"},{"abstractinfo":"超光滑表面在现代科学技术中具有重要意义.超精密抛光技术是实现超光滑表面的主要方法.本文对超光滑表面的概念、影响超精密抛光质量的因素、几种超精密抛光方法及其所能达到的抛光效果、抛光效果的测量与评价方法等进行了介绍.同时描述了超精密抛光的发展阶段、现状和发展趋势.","authors":[{"authorName":"谢会东","id":"2b954ee3-6a40-4c25-a325-5f531cd1b82c","originalAuthorName":"谢会东"},{"authorName":"王晓青","id":"d7ce1903-af41-4970-80bb-09003bfbf470","originalAuthorName":"王晓青"},{"authorName":"沈光球","id":"deb9ea70-3ee5-4361-97cb-be5b6ee05981","originalAuthorName":"沈光球"}],"doi":"10.3969/j.issn.1000-985X.2004.06.034","fpage":"1035","id":"a9cd15f2-9b31-4352-bd9c-5a32c9084dae","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"627ac45e-6c17-4b2d-ac1b-fb8ecaea69cd","keyword":"超光滑表面","originalKeyword":"超光滑表面"},{"id":"dd75676b-16d6-4a60-a03b-e0363d561bd5","keyword":"超精密抛光","originalKeyword":"超精密抛光"},{"id":"0672cb53-c7c2-4d2e-b012-5995a595a5cf","keyword":"表面粗糙度","originalKeyword":"表面粗糙度"},{"id":"40149007-839c-4993-9e18-f28d70d4726d","keyword":"平面度","originalKeyword":"平面度"}],"language":"zh","publisherId":"rgjtxb98200406034","title":"晶体的超精密抛光","volume":"33","year":"2004"},{"abstractinfo":"介质铁电超晶格薄膜是一类新型的薄膜材料,已逐渐开始受到重视,成为研究的热点.本文主要分析了铁电超晶格薄膜的结构特点、组分材料、介电铁电性能;介绍了其在实际中的应用以及在近几年的发展;概括了几种常用的介质铁电超晶格薄膜的生长技术及其影响因素;最后对铁电超晶格薄膜的发展和应用前景进行了展望.","authors":[{"authorName":"郝兰众","id":"6b76ff21-52b4-438f-930d-d40ae669ebec","originalAuthorName":"郝兰众"},{"authorName":"李燕","id":"0f54288b-eec0-44f0-846c-ada90687d6bc","originalAuthorName":"李燕"},{"authorName":"刘云杰","id":"cf67888c-abaf-410c-91ca-416b81c8c17d","originalAuthorName":"刘云杰"},{"authorName":"邓宏","id":"b0431513-3639-41a8-8661-287234c6782d","originalAuthorName":"邓宏"}],"doi":"","fpage":"1533","id":"31136dc8-182f-4a35-b8ab-98b5abf5703c","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"81298464-3bde-4b0d-8c3e-ebf6d7d727f3","keyword":"铁电超晶格","originalKeyword":"铁电超晶格"},{"id":"b6bf87f0-6b3d-4916-a378-ab081166aba4","keyword":"y薄膜","originalKeyword":"y薄膜"},{"id":"0a3eb80c-f214-47cb-8692-59ce48e81071","keyword":"分子束外延","originalKeyword":"分子束外延"}],"language":"zh","publisherId":"gncl2004z1431","title":"铁电超晶格薄膜","volume":"35","year":"2004"},{"abstractinfo":"从钢中夹杂物的评定方法和控制途径、超纯洁化冶炼工艺、夹杂物水平及其疲劳性能等方面对超纯洁弹簧钢的特点作了比较详细的介绍.","authors":[{"authorName":"惠卫军","id":"24d1443d-a6b8-4434-976a-a8d79e4103c7","originalAuthorName":"惠卫军"},{"authorName":"董瀚","id":"f2701d07-b0f5-43fc-a999-feec31a6a0b1","originalAuthorName":"董瀚"},{"authorName":"曾新光","id":"67256744-38c6-4c7f-bc44-e5024ef8634e","originalAuthorName":"曾新光"},{"authorName":"邢献强","id":"b2274d38-ab18-4025-88b3-8967c7cc97a2","originalAuthorName":"邢献强"},{"authorName":"李强","id":"ff0a235f-da4a-4998-bc21-7f59a6589c8b","originalAuthorName":"李强"}],"doi":"","fpage":"68","id":"339a02e9-1404-46eb-9d5e-a142f8605e18","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"05e00ecc-09fd-4ec5-837c-fac56205b436","keyword":"弹簧钢","originalKeyword":"弹簧钢"},{"id":"931850af-97b0-46bd-b9cf-d2039fcd4033","keyword":"非金属夹杂物","originalKeyword":"非金属夹杂物"},{"id":"f309e480-1b55-46e8-81fc-81939294b14a","keyword":"疲劳性能","originalKeyword":"疲劳性能"}],"language":"zh","publisherId":"gt199909017","title":"超纯洁弹簧钢","volume":"34","year":"1999"},{"abstractinfo":"对一种超塑性温度相对较低的双相钛合金SPZ的超塑性能进行了研究.结果表明:740~800℃,应变速率恒为1.11×10-3s-1时,SPZ合金的最大拉伸延伸率均超过1600%;760°C,合金的超塑延伸率可高达2149%.760℃,应变速率高达1.11×10-2s-1时,合金的超塑延伸率仍可达1380%.也就是说,700℃/1hAC处理后,SPZ合金在试验温度范围内具有低温高速超塑性.SEM观察发现,超塑变形前,合金的晶粒细小均匀,平均晶粒尺寸只有0.89μm;应变速率为2.22×10-3s-1,740℃,760℃变形后SPZ合金的晶粒尺寸分别为1.51μm,2.33μm.超塑性变形的微观机制是以晶界滑动为主,晶内变形以及位错蠕变起了协调作用.","authors":[{"authorName":"曾立英","id":"be020d8c-6db2-4147-88aa-e52d4c7099d7","originalAuthorName":"曾立英"},{"authorName":"赵永庆","id":"b5f544f7-1080-4a4f-81ec-5193434a5ffc","originalAuthorName":"赵永庆"},{"authorName":"李丹柯","id":"6129a03e-7b31-48aa-8147-6d3c480b880c","originalAuthorName":"李丹柯"},{"authorName":"李倩","id":"c162b688-dd2e-4280-ac14-7c499c38aff3","originalAuthorName":"李倩"}],"doi":"10.3969/j.issn.1005-5053.2006.05.002","fpage":"6","id":"af72521d-8443-4afa-b550-fd0e895061c4","issue":"5","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"a62770fd-5bce-4bf0-93e0-26e66274b558","keyword":"低温超塑性","originalKeyword":"低温超塑性"},{"id":"2aafecb2-4129-4b7d-a144-cd568990fe30","keyword":"双相钛合金","originalKeyword":"双相钛合金"},{"id":"86133297-e69a-449d-9fc9-79fb727b808a","keyword":"延伸率","originalKeyword":"延伸率"},{"id":"b8f32ac9-899f-4d69-82e6-e2a3b3ba5f63","keyword":"细晶组织","originalKeyword":"细晶组织"},{"id":"77f39882-dd1b-4709-a599-f687b1c89d83","keyword":"变形机制","originalKeyword":"变形机制"}],"language":"zh","publisherId":"hkclxb200605002","title":"低温超塑性钛合金的超塑性研究","volume":"26","year":"2006"},{"abstractinfo":"材料的拉伸断裂问题同时也是断裂延伸率问题,而材料的超塑性以其大的断裂延伸率为主要特征.自超塑性现象发现以来,人们从来没有停止过对超塑性大延伸率变形本质的探索.这方面的文献特别多,但主要集中在超塑性微观机理和变形机制方面,而对于超塑性变形力学规律方面的研究则相对较少.实际上,超塑性大延伸率与其力学稳定性密切相关,并由其特殊的断裂机制所决定.因此,本文首先从超塑性的微观断裂机制出发,着重回顾超塑性孔洞的形核、生长和连接的微观物理机制的研究进展.然后,主要从宏观力学稳定变形出发,回顾国内外有关超塑性拉伸过程中颈缩的产生和发展导致的断裂延伸率或极限应变的力学分析的研究工作,并作了相应的归类和评述.结论指出:尽管超塑性断裂机制的研究很多,但是缺乏统一的认识,仍需要长期的基础性工作.目前的首要任务就是从超塑性拉伸宏观力学规律出发,依据现代数值分析技术深入研究其力学稳定变形机制,以便揭示超塑性大延伸率现象的力学本质.在分析过程中,应采用精确定量的本构方程,并考虑变形路径等外部条件的影响.","authors":[{"authorName":"管志平","id":"b605e4fc-56ea-47ae-b92b-eb90346743da","originalAuthorName":"管志平"},{"authorName":"马品奎","id":"0cbe7a87-03c3-4c1e-bbdf-76e6891e55a5","originalAuthorName":"马品奎"},{"authorName":"宋玉泉","id":"ae536dbc-db99-4123-aafc-0346f75da544","originalAuthorName":"宋玉泉"}],"doi":"10.3724/SP.J.1037.2013.00078","fpage":"1003","id":"eee28573-24d9-4110-8afc-741a3f4efcb8","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3f7d2b90-9bf0-4919-ac8b-b0ae9d471ef4","keyword":"超塑性","originalKeyword":"超塑性"},{"id":"2f983e41-cfe5-4b2b-bd17-3f8fda008e70","keyword":"拉伸","originalKeyword":"拉伸"},{"id":"1e9a8e63-ac17-499b-ba94-1c10321436bc","keyword":"断裂延伸率","originalKeyword":"断裂延伸率"},{"id":"6349218e-e484-48da-abf6-09a0f78a3a9c","keyword":"极限应变","originalKeyword":"极限应变"},{"id":"4f990cd4-5bc5-415f-9759-82397dc571a1","keyword":"孔洞","originalKeyword":"孔洞"}],"language":"zh","publisherId":"jsxb201308015","title":"超塑性拉伸断裂分析","volume":"49","year":"2013"}],"totalpage":525,"totalrecord":5244}