{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用金相显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)和背散射电子衍射(EBSD)等实验技术,研究了压力容器钢板SA516 Gr70的显微组织和晶粒取向分布.根据多晶体塑性变形模型,预测了钢板的屈服表面.实验和计算结果表明,钢板的显微组织均为铁素体和珠光体,心部晶粒尺寸明显大于表层晶粒尺寸;钢板热轧后的主要织构组分是[111] 〈110〉、[111] 〈112〉和[001] 〈110〉;限制条件对屈服表面影响较大,随着松弛限制的晶粒体积分数增加,屈服表面缩小,沿轧向的平面应变屈服应力逐渐大于沿横向的平面应变屈服应力.","authors":[{"authorName":"张清辉","id":"882ef3e1-0443-48fa-b29c-beaebbbe0f0a","originalAuthorName":"张清辉"},{"authorName":"杨艳萍","id":"fe041019-c141-4853-9e64-e717a08a56c8","originalAuthorName":"杨艳萍"},{"authorName":"陈冷","id":"aa1ec937-aced-4aa1-9d33-1a6ece81fafe","originalAuthorName":"陈冷"}],"doi":"","fpage":"102","id":"885ffce6-c3c6-46dd-8a3e-b96e368e10bd","issue":"z1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"9633a13b-648b-46c3-9b39-b021db14c715","keyword":"SA516Gr70","originalKeyword":"SA516Gr70"},{"id":"42b310bd-d050-4fa5-b978-330eab70a197","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"78724096-9282-4160-8fb9-24c08c3e9b74","keyword":"织构","originalKeyword":"织构"},{"id":"30c42be2-212d-425f-a00f-4577ec45f3a4","keyword":"屈服表面","originalKeyword":"屈服表面"}],"language":"zh","publisherId":"jsrclxb2013z1021","title":"压力容器钢板SA516Gr70显微组织分析和屈服表面预测","volume":"34","year":"2013"},{"abstractinfo":"本文利用X射线对不同碳含量钢的表面微观屈服强度进行了研究。试验结果表明,表面微观屈服强度σ_(ms)远低于整体材料的屈服限,是一个反映表面抵抗塑性变形能力大小的参量。材料光滑疲劳极限往往是由裂纹荫生所控制的,与表面抵抗塑性变形的能力有关。本试验表明不同材料的σ_(ms)与存活率为50%疲劳极限的关系为:σ_(ms)=(0.81—1.02)σ_(-1);40Cr不同热处理状态的σ_(ms)与存活率为99.9%疲劳极限的关系为:σ_(ms)=(0.98—1.10)σ_(-1)。σ_(ms)的测定要比疲劳极限σ_(-1)的测定省时得多,有可能在工程上获得应用。","authors":[{"authorName":"王宏伟","id":"100403cd-02e4-471c-aecb-c478aa3516d0","originalAuthorName":"王宏伟"},{"authorName":"马晋生","id":"865c13a8-efec-4af9-93d8-6414e318918d","originalAuthorName":"马晋生"},{"authorName":"南俊马","id":"7351bf28-fabc-4423-8ab7-cece5814bb94","originalAuthorName":"南俊马"},{"authorName":"何家文","id":"0f3f49fa-f584-4369-b0b4-7844fd96e471","originalAuthorName":"何家文"}],"categoryName":"|","doi":"","fpage":"49","id":"8f1dfd85-55b5-4986-bbc4-983349abe8cf","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"79ce66d9-74c9-463f-9188-4c4c1b12ff8a","keyword":"表面微观屈服强度","originalKeyword":"表面微观屈服强度"},{"id":"27db7860-02f0-4f46-8f75-6b937aca0d8a","keyword":"fatigue limit","originalKeyword":"fatigue limit"},{"id":"263c7850-8dfb-453d-bbb3-bb6d514c8cbb","keyword":"X-ray diffraction","originalKeyword":"X-ray diffraction"}],"language":"zh","publisherId":"0412-1961_1991_5_15","title":"表面微观屈服强度与疲劳极限的关系","volume":"27","year":"1991"},{"abstractinfo":"根据各向同性连续介质中的弹性应力场和Mises屈服准则,计算出直Volterra位错芯屈服区的二维几何构型.结果表明:在无限弹性体中,直刃型Volterra位错芯屈服区呈哑铃状,且在滑移面上屈服半宽度最大reg=5.9b(b为Burgers矢量模),攀移面上屈服半宽度最小rec=1.4b;直螺型Volterra位错芯屈服区为圆形,屈服半径rs=4.1b.在半无限弹性体中.受自由表面镜像位错的作用,直螺型位错芯屈服中心向表面偏移,屈服区形态依赖于直螺型位错线与自由表面的间距.","authors":[{"authorName":"于志伟","id":"41c0392b-756d-4052-8928-0b017691434e","originalAuthorName":"于志伟"},{"authorName":"许晓磊","id":"3609d44c-82e8-4640-9f6c-12420901a85c","originalAuthorName":"许晓磊"},{"authorName":"刘路","id":"37195043-59c5-4814-964a-73a5ab81dfd9","originalAuthorName":"刘路"}],"categoryName":"|","doi":"","fpage":"235","id":"616fa28e-59d4-4996-b389-50a61cea4e9b","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4508af89-6f70-4b97-9df5-e8a410d36f30","keyword":"Volterra位错","originalKeyword":"Volterra位错"},{"id":"c88526bf-6a50-47f9-80d0-fccefa486bad","keyword":"null","originalKeyword":"null"},{"id":"ff798df8-0b2f-42db-ae4f-ecd8b005c51e","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2002_3_11","title":"直Volterra位错芯屈服区构型","volume":"38","year":"2002"},{"abstractinfo":"根据各向同性连续介质中的弹性应力场和Mises屈服准则,计算出直Volterra位错芯屈服区的二维几何构型.结果表明:在无限弹性体中,直刃型Volterra位错芯屈服区呈哑铃状,且在滑移面上屈服半宽度最大reg=5.9b(b为Burgers矢量模),攀移面上屈服半宽度最小rec=1.4b;直螺型Volterra位错芯屈服区为圆形,屈服半径rs=4.1b.在半无限弹性体中.受自由表面镜像位错的作用,直螺型位错芯屈服中心向表面偏移,屈服区形态依赖于直螺型位错线与自由表面的间距.","authors":[{"authorName":"于志伟","id":"af634aa5-43cd-407f-b8ac-d2f0aa59cf8e","originalAuthorName":"于志伟"},{"authorName":"许晓磊","id":"06ee610d-e33b-4037-8c02-190b5da3bc21","originalAuthorName":"许晓磊"},{"authorName":"刘路","id":"912cc17e-824e-45db-a4b3-b2a0cf6eac18","originalAuthorName":"刘路"}],"doi":"10.3321/j.issn:0412-1961.2002.03.003","fpage":"235","id":"af8d5dc7-f591-4a94-a7b4-6026c4ff67ce","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"6c83c4e4-31e9-4457-b152-0d08db0292f4","keyword":"Volterra位错","originalKeyword":"Volterra位错"},{"id":"64792012-1ba3-4efe-adc3-1ebe9c62d665","keyword":"屈服区","originalKeyword":"屈服区"},{"id":"92deb220-ff01-472b-bc8d-9a51edb74838","keyword":"几何构型","originalKeyword":"几何构型"}],"language":"zh","publisherId":"jsxb200203003","title":"直Volterra位错芯屈服区构型","volume":"38","year":"2002"},{"abstractinfo":"基于厚壁圆筒的弹性失效准则所确定的圆筒的初始屈服压力与材料的屈服极限的关系,设计了一种测定材料屈服极限的实验方法,并测得了一组实验数据.通过对该实验数据的分析得到了圆筒的初始屈服压力,最终求得了材料的屈服极限.由于该实验值与理论值误差较小,表明了该实验方法具有较好的可靠性.该方法对研究材料的力学性能及压力容器的失效规律具有一定的工程实际意义和理论价值.","authors":[{"authorName":"张于贤","id":"3782250e-2834-4c67-9671-21e1a574da2d","originalAuthorName":"张于贤"},{"authorName":"王红","id":"72653d3d-0aad-4da1-87ec-e86ff3b80f89","originalAuthorName":"王红"}],"doi":"10.3969/j.issn.1001-4381.2005.11.012","fpage":"43","id":"5cba79b6-3fb7-4e4b-b3c6-fcb86085473f","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"3393f6e8-57bd-427b-95db-c64005e9b2f6","keyword":"厚壁圆筒","originalKeyword":"厚壁圆筒"},{"id":"677a11c7-0442-4e20-b5a3-4e561dc1c9fe","keyword":"失效","originalKeyword":"失效"},{"id":"4a0274a9-edeb-498e-815e-e1e811b42b9f","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"b642d1ab-8d2a-4728-8d81-3a106e7c3db1","keyword":"屈服极限","originalKeyword":"屈服极限"}],"language":"zh","publisherId":"clgc200511012","title":"关于材料屈服强度的实验研究","volume":"","year":"2005"},{"abstractinfo":"基于厚壁圆筒的弹性失效准则所确定的圆筒的初始屈服压力与材料的屈服极限的关系,设计了一种测定材料屈服极限的实验方法,并测得了一组实验数据.通过对该实验数据的分析得到了圆筒的初始屈服压力,最终求得了材料的屈服极限.由于该实验值与理论值误差较小,表明该实验方法具有较好的可靠性.该方法对研究材料的机械性能及压力容器的失效规律具有一定的工程实际意义和理论价值.","authors":[{"authorName":"张于贤","id":"09686bcb-aa18-46f2-bacb-05ca180a6036","originalAuthorName":"张于贤"},{"authorName":"王红","id":"26aecfbc-95d1-43e3-87f0-f8d195ec370c","originalAuthorName":"王红"}],"doi":"","fpage":"402","id":"b9284f30-ec4d-4112-ade8-a3dbd9e754f1","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"441cbf5e-bd28-461b-8540-b35fd164a419","keyword":"厚壁圆筒","originalKeyword":"厚壁圆筒"},{"id":"7d248b17-c2e6-4918-a892-afbeeaf3cf3e","keyword":"失效","originalKeyword":"失效"},{"id":"b05b9fab-4430-45f4-b912-5b76a02885ed","keyword":"机械性能","originalKeyword":"机械性能"},{"id":"8802e110-d780-4461-9d09-b380315adff8","keyword":"屈服极限","originalKeyword":"屈服极限"}],"language":"zh","publisherId":"cldb2005z1131","title":"关于材料屈服强度的实验研究","volume":"19","year":"2005"},{"abstractinfo":"本文讨论了有关金属及合金屈服强度的若干问题,包括: 1.滑移和位错; 2.位错的增殖; 3.范性流变速率方程; 4.派尔斯(Peierls)应力; 5.温度对屈服强度的影响; 6.溶质原子的影响。","authors":[{"authorName":"铃木秀次","id":"4c647449-18b8-43ac-bb65-01d6ee650329","originalAuthorName":"铃木秀次"}],"categoryName":"|","doi":"","fpage":"583","id":"3f9633b2-6b9c-4c34-8813-950b59b980f8","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1981_5_11","title":"金属及合金的屈服强度","volume":"17","year":"1981"},{"abstractinfo":"针对预拉伸和预扭转变形后的拉扭组合实验, 用多晶集合体模型为代表性单元, 结合晶体塑性理论对多晶Cu进行了晶粒尺度的屈服特性研究, 采用子模型法对晶粒尺度的代表性单元模型和多晶Cu试样拉扭实验进行跨尺度材料力学行为分析. 结合对多晶集合体的后继屈服面形状及演化趋势的研究, 探讨不同加载路径和不同屈服点定义对材料后继屈服面的影响; 通过对不同加载路径多晶Cu非均匀性的统计分析, 探讨加载历史对多晶材料细观塑性变形不均匀性的影响. 分析结果表明: 后继屈服面的形状和尖角效应的出现与预加载方向和屈服定义有关; 加载路径不同, 多晶体内变形不均匀性的差异很大. 运用子模型的晶体塑性模拟与后继屈服实验的结果有较好的一致性.","authors":[{"authorName":"胡桂娟张克实石艳柯苏莉","id":"60d39841-6333-4b7b-9834-bf30b5693352","originalAuthorName":"胡桂娟张克实石艳柯苏莉"}],"categoryName":"|","doi":"10.3724/SP.J.1037.2009.00752","fpage":"466","id":"56e89ca7-e062-488d-ab7d-3bb4ab629ba3","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"32d14037-5f2e-412a-ae0f-52e46a8e74ae","keyword":"晶体塑性","originalKeyword":"晶体塑性"},{"id":"23252c29-c65b-458a-9f86-e834fcdfd017","keyword":" subsequent yield surface","originalKeyword":" subsequent yield surface"},{"id":"09a359f4-f790-4027-94f6-77a8c371e545","keyword":" sub-model method","originalKeyword":" sub-model method"},{"id":"6bf40ab7-d05e-4546-b482-f54ddc7b591a","keyword":" polycrystal Cu","originalKeyword":" polycrystal Cu"}],"language":"zh","publisherId":"0412-1961_2010_4_10","title":"多晶Cu屈服及后继屈服拉扭实验的晶体塑性数值分析","volume":"46","year":"2010"},{"abstractinfo":"针对预拉伸和预扭转变形后的拉扭组合实验,用多晶集合体模型为代表性单元,结合晶体塑性理论对多晶Cu进行了晶粒尺度的屈服特性研究,采用于模型法对晶粒尺度的代表性单元模型和多晶Cu试样拉扭实验进行跨尺度材料力学行为分析.结合对多晶集合体的后继屈服面形状及演化趋势的研究,探讨不同加载路径和不同屈服点定义对材料后继屈服面的影响;通过对不同加载路径多晶Cu非均匀性的统计分析,探讨加载历史对多晶材料细观塑性变形不均匀性的影响.分析结果表明:后继屈服面的形状和尖角效应的出现与预加载方向和屈服定义有关;加载路径不同,多晶体内变形不均匀性的差异很大.运用子模型的晶体塑性模拟与后继屈服实验的结果有较好的一致性.","authors":[{"authorName":"胡桂娟","id":"1c7e4160-2422-4454-8233-3aa6e2637ce1","originalAuthorName":"胡桂娟"},{"authorName":"张克实","id":"3a5fe1ef-2e23-4963-b5bc-f6ec58c6c0a2","originalAuthorName":"张克实"},{"authorName":"石艳柯","id":"53070d43-b0d1-4f57-8aa6-7cdc3a79ccfc","originalAuthorName":"石艳柯"},{"authorName":"苏莉","id":"49221e72-a0f7-49df-afbe-cd2e481563ca","originalAuthorName":"苏莉"}],"doi":"10.3724/SP.J.1037.2009.00752","fpage":"466","id":"9b42960f-36a4-44d3-b3d1-6f01d57bfe70","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"dc72d8c6-157a-49c7-bd97-e24a2fdc2dfb","keyword":"晶体塑性","originalKeyword":"晶体塑性"},{"id":"417dbd7c-1582-4179-b22e-85df07671c58","keyword":"后继屈服面","originalKeyword":"后继屈服面"},{"id":"633459e5-70cb-4cee-9a83-2d18b228e3e5","keyword":"子模型法","originalKeyword":"子模型法"},{"id":"d1229b92-45fd-48a1-b776-443ecf175e85","keyword":"多晶Cu","originalKeyword":"多晶Cu"}],"language":"zh","publisherId":"jsxb201004013","title":"多晶Cu屈服及后继屈服拉扭实验的晶体塑性数值分析","volume":"46","year":"2010"},{"abstractinfo":"针对建立的十字形双向拉伸试验系统,利用有限元模拟优化得到的十字形试件,采用载荷控制方式对SPEN钢板和2024-O铝合金板进行了不同加载路径下的双向拉伸试验,得到了不同硬化阶段下的实验屈服轨迹,并与现有屈服准则Hill48、Hill79、Hill90、Hill93、Gotoh、Hosford、Barlat-Lian以及Mises的理论屈服轨迹进行了对比.结果表明:对于SPEN钢板,Hosford各向异性屈服准则得到的理论屈服轨迹与实验屈服轨迹符合得最好,其次是Mises屈服准则,Hill48屈服准则最差;对2024-O铝合金板,Barlat89、Hosford屈服轨迹与实验屈服轨迹符合得最好,Mises屈服准则最差.","authors":[{"authorName":"吴向东","id":"e3d2732d-9212-4a95-a662-b8923b302864","originalAuthorName":"吴向东"},{"authorName":"万敏","id":"277432da-142b-46ad-b230-6da138e8250a","originalAuthorName":"万敏"},{"authorName":"周贤宾","id":"4c25bd1b-c424-49a1-a793-4da21a4dd616","originalAuthorName":"周贤宾"}],"doi":"10.3969/j.issn.1005-0299.2004.04.015","fpage":"391","id":"b9cf3ed0-eb36-4385-8bc4-1f7e592d376b","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"0d1b066b-7955-4ce4-a0c0-3c6b41dff6ed","keyword":"双向拉伸试验","originalKeyword":"双向拉伸试验"},{"id":"3e2a46d1-cb6c-4db7-8795-92f774723fb4","keyword":"十字形试件","originalKeyword":"十字形试件"},{"id":"1d0f6908-5d7a-40ea-bd59-5387958f08d7","keyword":"各向异性","originalKeyword":"各向异性"},{"id":"4370696c-3ff9-405d-805f-29a363e12b63","keyword":"屈服准则","originalKeyword":"屈服准则"}],"language":"zh","publisherId":"clkxygy200404015","title":"各向异性板料屈服轨迹的研究","volume":"12","year":"2004"}],"totalpage":4743,"totalrecord":47421}