{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了镁合金表面钼酸盐转化膜以及钼酸盐-磷酸盐复合转化膜,探讨了两种转化膜的组成、形态、极化曲 线及耐盐水腐蚀性.发现钼酸盐-磷酸盐转化膜微观表面呈均匀\"蜂窝\"状,较单的钼酸盐转化膜具有更好的耐腐蚀性.","authors":[{"authorName":"朱婧","id":"0c759557-51c1-47c9-8ca0-9b3529413d38","originalAuthorName":"朱婧"},{"authorName":"","id":"bd6d26db-c5a5-4a13-ad27-122a32829583","originalAuthorName":"雍止一"},{"authorName":"邱晨","id":"b36d2f78-014b-43d2-aff1-c4e785f646e5","originalAuthorName":"邱晨"},{"authorName":"郝瑞","id":"9d5245bb-52ff-46d6-87bf-bd34437d7385","originalAuthorName":"郝瑞"},{"authorName":"刘娅莉","id":"d05ca2fe-f47e-41af-b5d1-ebc9f4f42b91","originalAuthorName":"刘娅莉"}],"doi":"10.3969/j.issn.1001-3849.2008.06.002","fpage":"6","id":"2933c75b-4edc-481b-a512-8f364663d2ac","issue":"6","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"c9715d6c-c44a-43a3-98eb-a0b179f903fb","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"a4d3ad2c-8c7c-4091-8a92-9512855685c6","keyword":"钼酸盐-磷酸盐","originalKeyword":"钼酸盐-磷酸盐"},{"id":"fbe46ebf-f2a1-4de2-b11a-4b2b258d5f22","keyword":"转化膜","originalKeyword":"转化膜"}],"language":"zh","publisherId":"ddjs200806002","title":"镁合金钼酸盐、钼酸盐-磷酸盐转化膜的研究","volume":"30","year":"2008"},{"abstractinfo":"对种用于汽车和通讯行业的新型预磷化镀锌钢板的粉末喷涂前处理工艺进行了研究,通过晶相、膜质量及盐雾试验,对预磷化板的现有工艺进行了改进.酸洗工艺对预磷化板是不利的,酸洗工艺完全破坏了预磷化膜层.盐雾试验结果表明,预磷化镀锌钢板经过弱碱性脱脂剂清洗,经表调、磷化然后和粉末涂料结合,可以得到良好耐蚀性和附着力强的涂层.","authors":[{"authorName":"于占峰","id":"cf5e3f42-3afd-4321-9826-a6919f87e6eb","originalAuthorName":"于占峰"},{"authorName":"刘娅莉","id":"96951166-aa98-4aad-89f6-1b343318bbef","originalAuthorName":"刘娅莉"},{"authorName":"","id":"0cc23fba-4b47-41ec-beee-fec2cd76aa25","originalAuthorName":"雍止一"},{"authorName":"刘德兴","id":"76e0c44d-c9eb-4c76-bb0d-51b2554811cb","originalAuthorName":"刘德兴"},{"authorName":"范建勋","id":"f3eff0e4-ec12-411c-9d58-666f4234a0cd","originalAuthorName":"范建勋"}],"doi":"10.3969/j.issn.1001-3849.2005.01.010","fpage":"29","id":"31f3654f-0dde-4837-a3e4-ee879b59de92","issue":"1","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"a1e2c122-69a1-4929-9c6f-d2b736671a81","keyword":"预磷化镀锌钢板","originalKeyword":"预磷化镀锌钢板"},{"id":"ebfbc1a0-0372-4e99-8bcd-38e694f4c444","keyword":"酸洗","originalKeyword":"酸洗"},{"id":"a4191478-1042-47de-acca-8e61f83f3cf3","keyword":"粉末喷涂","originalKeyword":"粉末喷涂"},{"id":"a2f34ed7-8034-42f1-a1b5-bbad687436d4","keyword":"前处理","originalKeyword":"前处理"}],"language":"zh","publisherId":"ddjs200501010","title":"预磷化电镀锌钢板粉末喷涂前处理工艺","volume":"27","year":"2005"},{"abstractinfo":"用咪唑啉水溶液在镁合金(AZ91D)电极表面制备了自组装单分子膜,研究了该组装膜在0.2 mol/L NaCl中对AZ91D的缓蚀作用.通过接触角、FT-IR、EIS和线性极化等方法对自组装膜的形成过程和保护效率进行了研究,得出最佳的咪唑啉组装液浓度为5×10-4mol/L和最佳组装时间为72 h下的缓蚀效率.","authors":[{"authorName":"","id":"c93c163b-272e-494f-bab4-99854c93d9a2","originalAuthorName":"雍止一"},{"authorName":"刘娅莉","id":"978dc10c-c3ab-4393-8dcd-574219d245d3","originalAuthorName":"刘娅莉"},{"authorName":"李智","id":"78f657ae-650f-4e0b-bae4-9b19bd53e15a","originalAuthorName":"李智"}],"categoryName":"|","doi":"","fpage":"79","id":"2c03abe1-1959-4b3c-b5eb-1e0d064fdec2","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"6e570467-e3dc-4859-b258-df87c97de910","keyword":"油酸咪唑啉\n单分子膜\n镁合金","originalKeyword":"油酸咪唑啉\n单分子膜\n镁合金"}],"language":"zh","publisherId":"1002-6495_2006_2_4","title":"咪唑啉自组装单分子膜在镁合金AZ91D表面的防腐蚀研究","volume":"18","year":"2006"},{"abstractinfo":"用咪唑啉水溶液在镁合金(AZ91D)电极表面制备了自组装单分子膜,研究了该组装膜在0.2 mol/L NaCl中对AZ91D的缓蚀作用.通过接触角、FT-IR、EIS和线性极化等方法对自组装膜的形成过程和保护效率进行了研究,得出最佳的咪唑啉组装液浓度为5×10-4 mol/L和最佳组装时间为72 h下的缓蚀效率.","authors":[{"authorName":"","id":"b51bb049-f587-47c4-909d-353804b5944e","originalAuthorName":"雍止一"},{"authorName":"刘娅莉","id":"10e2a0c4-4950-4666-ba07-9ab6fddd9c98","originalAuthorName":"刘娅莉"},{"authorName":"李智","id":"8ce0e5d5-93ca-4536-bfe5-41c68ab8387d","originalAuthorName":"李智"}],"doi":"10.3969/j.issn.1002-6495.2006.02.001","fpage":"79","id":"0380add6-3573-4332-9036-53b3c418251c","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"657b8877-a108-462f-86e7-67df24f43b51","keyword":"油酸咪唑啉","originalKeyword":"油酸咪唑啉"},{"id":"eccd5f19-a89d-40ba-af50-6b67856e3bbb","keyword":"自组装单分子膜","originalKeyword":"自组装单分子膜"},{"id":"aa049264-9ccf-4b14-bf0b-66054c9a5957","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"feb09f0c-8549-4a54-aff8-3f7f1aa91fa0","keyword":"吸附膜","originalKeyword":"吸附膜"}],"language":"zh","publisherId":"fskxyfhjs200602001","title":"咪唑啉自组装单分子膜在镁合金AZ91D表面的防腐蚀研究","volume":"18","year":"2006"},{"abstractinfo":"本文针对微细通道内流体的流动和燃烧提出了近壁面处存在滞流的新观点,通过定的理论分析证明了滞流存在的可能性,并基于燃烧特性,采用理论方法提出了种滞流厚度的定义方法.基于近壁面处滞流可能的速度特性,存在燃烧时,提出了可采用基于沿y方向扩散速度ud和沿x方向流动速度uf变化特性定义滞流厚度,当ud=1000uf时所获得流体转折高度yc即为滞流的厚度.","authors":[{"authorName":"冉景煜","id":"4746d056-c9db-441b-843a-f227029c7e73","originalAuthorName":"冉景煜"},{"authorName":"龙芸","id":"6b581690-3801-4f63-b4ca-90a05ccff8d7","originalAuthorName":"龙芸"},{"authorName":"王蕊蕊","id":"15defb80-4b57-4e72-aa3d-49be75c7895c","originalAuthorName":"王蕊蕊"}],"doi":"","fpage":"451","id":"a24b5352-e571-4374-bcb0-71d92a7ecad3","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e0fdad55-ac4b-4384-831f-8c06d37508d3","keyword":"微细通道","originalKeyword":"微细通道"},{"id":"6d4ce98b-902e-46d1-9d2f-edff34b9f868","keyword":"滞流","originalKeyword":"滞止流"},{"id":"5e04505d-bb25-47d8-b432-b25b6683115b","keyword":"厚度判据","originalKeyword":"厚度判据"},{"id":"35784fb3-5a3b-465d-a1c4-4ebad93943d1","keyword":"甲烷/湿空气","originalKeyword":"甲烷/湿空气"},{"id":"492153eb-0108-41d9-8098-b8ea38931d99","keyword":"燃烧","originalKeyword":"燃烧"}],"language":"zh","publisherId":"gcrwlxb201502049","title":"种微细通道内甲烷/湿空气滞流厚度确定方法","volume":"36","year":"2015"},{"abstractinfo":"采用FLUENT耦合CHEMK工程表面反应方法实现二维轴对称滞点甲烷催化燃烧的数值模拟,并与SPIN程序的维计算结果进行比较.研究结果表明,由于二维模拟考虑径向扩散,相同拉伸率时,二维的火焰前沿更靠近滞点,且最大组分浓度、最大温度等值均小于维结果;二者轴向速度趋势致,变化幅度相当,但由于火焰前沿位置变化,导致流场整体平移;各个拉伸率时滞面上的径向温度梯度都很小,但低拉伸率时空间反应区径向温度梯度很大.高拉伸率时,滞点催化反应的维特性更好.","authors":[{"authorName":"徐侃","id":"785c386e-7f1e-4905-8cba-4a92caa598e8","originalAuthorName":"徐侃"},{"authorName":"刘明侯","id":"4b32e232-adbd-46f4-adcb-cd1fc867feec","originalAuthorName":"刘明侯"},{"authorName":"邢丹","id":"38becb74-446b-4d47-8033-b958cdab2388","originalAuthorName":"邢丹"},{"authorName":"王亚青","id":"a41e70c9-bab7-4d11-8917-795ef9fd916e","originalAuthorName":"王亚青"},{"authorName":"刘东","id":"a1de9a8d-c49e-4a8b-b60d-17d9ab3a5a6c","originalAuthorName":"刘东"},{"authorName":"陆游","id":"cf4544f2-823a-4bb1-87bd-9dfd30d0947d","originalAuthorName":"陆游"}],"doi":"","fpage":"1775","id":"4f7cd006-9a34-4aed-a281-3c30b7711df9","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1b2a7a52-d7f8-4f0d-8167-355a723ef691","keyword":"滞点","originalKeyword":"滞止点"},{"id":"03f5fb54-d794-4868-b2db-660ca51d970c","keyword":"催化燃烧","originalKeyword":"催化燃烧"},{"id":"a38694df-6340-42be-bcb1-9c205ff7d8cd","keyword":"拉伸率","originalKeyword":"拉伸率"}],"language":"zh","publisherId":"gcrwlxb201010039","title":"滞点催化燃烧的维和二维数值分析","volume":"31","year":"2010"},{"abstractinfo":"根据国内外断裂力学性能的研究文献,对裂韧性的研究现状进行了概括总结.综述了钢中裂纹裂的能量原理,介绍了裂韧性测试方法和裂在实际中的应用.","authors":[{"authorName":"周峰峦","id":"47422c08-888e-4736-9a72-faaedf331856","originalAuthorName":"周峰峦"},{"authorName":"高怡斐","id":"d97b1a9d-9152-4cec-94ec-0dedd0a07261","originalAuthorName":"高怡斐"}],"doi":"","fpage":"26","id":"ea59aac9-3258-4d82-8cde-4d06007ff6d1","issue":"4","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"c79908a8-3de9-49cd-a867-7bb2bc59e535","keyword":"断裂","originalKeyword":"断裂"},{"id":"36650e68-7ec2-4af5-8bbf-252d606facba","keyword":"裂","originalKeyword":"止裂"},{"id":"ebd785a5-9830-439c-a2a4-f6a9a6a80b4f","keyword":"韧性","originalKeyword":"韧性"}],"language":"zh","publisherId":"wlcs200904007","title":"钢中裂纹裂研究","volume":"27","year":"2009"},{"abstractinfo":"基于AH36、EH36和FH500三种船体钢的梯度温度场型双重拉伸试验结果,对裂温度和裂韧性分别作为止裂性能表征参量的特点进行了分析.结果表明,与裂韧性相比,裂温度测试稳定性好、工程适用性好,更宜作为船体钢裂性能的工程应用表征参量.","authors":[{"authorName":"薛钢","id":"e5d3dfbe-b3b8-4ded-9642-5916e7adfe79","originalAuthorName":"薛钢"},{"authorName":"宫旭辉","id":"00d66b55-2e8c-4194-98ba-ade0a1d1b6a5","originalAuthorName":"宫旭辉"},{"authorName":"徐科","id":"7bb9f255-98b7-41db-85ba-801f5e4a5953","originalAuthorName":"徐科"},{"authorName":"王任甫","id":"ffc05b0b-d177-441c-ba26-68a37270e644","originalAuthorName":"王任甫"}],"doi":"","fpage":"9","id":"c19fe6b6-b4cf-4a76-84ee-82179be5749e","issue":"1","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"c6af0965-ac3c-4d38-8fc3-4d4b441c26e0","keyword":"裂温度","originalKeyword":"止裂温度"},{"id":"45c91933-05a3-437c-9043-bb4fa7a5a674","keyword":"裂韧性","originalKeyword":"止裂韧性"},{"id":"10a4104e-addf-40c5-9fba-a3128081a80a","keyword":"双重拉伸试验","originalKeyword":"双重拉伸试验"}],"language":"zh","publisherId":"clkfyyy201401002","title":"船体钢裂性能表征参量裂温度和裂韧性的对比分析","volume":"29","year":"2014"},{"abstractinfo":"将“人工楔块”上裂技术用于表面裂纹疲劳裂在对表面裂纹试件进行了低频拉伸和高频弯曲两种载荷下的有楔、无楔试验后,发现“人工楔块”上裂技术对于表面裂纹同样有显著的裂效果","authors":[{"authorName":"银建中","id":"ed19ad33-92a4-4ed7-b5c7-0511a4ae7d14","originalAuthorName":"银建中"},{"authorName":"王炎炎","id":"a3fd1829-6eae-4283-849b-cbaec489b3ec","originalAuthorName":"王炎炎"}],"categoryName":"|","doi":"","fpage":"173","id":"fac35e79-f74e-4207-a341-73123f39d640","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"d4eefa45-8be1-45b9-8acd-d06098c0f688","keyword":"表面裂纹","originalKeyword":"表面裂纹"},{"id":"b1a4f542-a5aa-4ed1-b950-bbde747e6e48","keyword":"null","originalKeyword":"null"},{"id":"72a5f0d2-0ee9-4594-bf35-ba2b395542dd","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-3093_1997_2_17","title":"表面裂纹疲劳裂技术","volume":"11","year":"1997"},{"abstractinfo":"基于AH36、EH36和FH500三种船体钢的梯度温度场型双重拉伸试验和落锤试验结果,对裂温度和无塑性转变温度的相关性进行了分析.结果表明,三种船体钢裂温度与无塑性转变温度之间存在定的对应关系,反映了两种试验方法之间存在定的相关性.","authors":[{"authorName":"宫旭辉","id":"42e11301-e265-47b8-8dd1-246184b4873a","originalAuthorName":"宫旭辉"},{"authorName":"薛钢","id":"ca82bac9-9690-4943-bfdd-f3748eb32580","originalAuthorName":"薛钢"},{"authorName":"徐科","id":"841b66e0-ef39-42f0-9bff-b2c1663bf8f8","originalAuthorName":"徐科"},{"authorName":"王任甫","id":"f7eee78e-1c7c-4dc2-8578-ea79ad686a95","originalAuthorName":"王任甫"}],"doi":"","fpage":"1","id":"df27a10a-1b4d-43fa-9c85-52736c341bfd","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"3a64b9d0-c89a-44a5-ac76-91a510817b6e","keyword":"裂温度","originalKeyword":"止裂温度"},{"id":"f9971bda-500a-4f96-a2c1-69d255830011","keyword":"无塑性转变温度","originalKeyword":"无塑性转变温度"},{"id":"19e726b0-51ca-48e8-9624-7209c9f5645f","keyword":"相关性","originalKeyword":"相关性"}],"language":"zh","publisherId":"clkfyyy201402001","title":"船体钢裂温度与无塑性转变温度相关性分析","volume":"29","year":"2014"}],"totalpage":7444,"totalrecord":74440}