{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"目前,管材表面的高频感应主要集中于试验方面,缺乏理论研究.对锅炉管壁在不同覆电流下高频感应NiCrSiB层的温度场进行了数值模拟,基于感应加热原理进行了有限元分析,并加以试验验证.采用金相显微镜、扫描电镜以及能谱仪对覆层的显微组织与成分进行了分析;采用硬度计及王水腐蚀分别测试了覆层的硬度及耐蚀性能.结果表明:在250 kHz时,覆电流越大,感应加热效率越高,感应加热结束时管内外壁的温差越大,管基体受到的热损伤越小;基体中的Mo元素向覆层扩散,覆层中的Si元素向基体渗透,过渡区Ni,Cr元素的含量相对覆层中的明显减少;频率为250 kHz,覆电流取830 A时,覆层和基体过渡区有明显锯齿状的白亮带产生,基体和覆层呈冶金结合,覆层金相组织为奥氏体+碳化物共晶,具有良好的耐蚀性能,平均硬度为323 HV,是基体的1.79倍.","authors":[{"authorName":"岑虎","id":"79b7a2d1-4e13-4717-bfa1-a7818d1e3dcf","originalAuthorName":"岑虎"},{"authorName":"王云山","id":"cf90488b-c7a9-4a2e-9dec-c3aea502574b","originalAuthorName":"王云山"},{"authorName":"雷剑波","id":"8ad11848-4d5c-476d-93a9-094d5299f3d4","originalAuthorName":"雷剑波"},{"authorName":"刘少军","id":"9c978ec5-3b7e-4d21-8370-b37ecfb4952c","originalAuthorName":"刘少军"},{"authorName":"孟庆若","id":"b4b36e8e-cf00-492f-b260-e5fb5f93103d","originalAuthorName":"孟庆若"}],"doi":"","fpage":"12","id":"0697b61c-7ea9-499f-9a1d-cc9bbf69f63a","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"69637440-824c-45d7-b3b8-0535ef56c6a6","keyword":"高频感应","originalKeyword":"高频感应熔覆"},{"id":"983c6b72-b68d-4475-be86-06f3de432a61","keyword":"NiCrSiB覆层","originalKeyword":"NiCrSiB熔覆层"},{"id":"144a77b9-9520-4872-97ef-0d8919d76ed3","keyword":"锅炉管","originalKeyword":"锅炉管"},{"id":"ccc21594-5280-4d7c-bb2a-abc6fcf3cb65","keyword":"温度场数值模拟","originalKeyword":"熔覆温度场数值模拟"},{"id":"ec6600e6-7ff8-413b-add7-0340bdeddec8","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"}],"language":"zh","publisherId":"clbh201402004","title":"锅炉管表面NiCrSiB合金高频感应数值模拟覆层的性能","volume":"47","year":"2014"},{"abstractinfo":"本文针对激光原位合成生物陶瓷涂层的试验过程,进行了相应的数值模拟.计算出激光合成羟基磷灰石等钙磷基生物陶瓷的三维温度场.结果表明激光形成的温度场有利于生物陶瓷涂层形成细小且呈梯度分布的组织.","authors":[{"authorName":"邓迟","id":"4ee67aa9-dd0f-4b61-b703-e7d14acb6af0","originalAuthorName":"邓迟"},{"authorName":"张亚平","id":"e4d9b1d0-93d2-4876-b756-ff1f09e833c3","originalAuthorName":"张亚平"},{"authorName":"高家诚","id":"7648df80-cf4f-4962-a822-c40a7ce26489","originalAuthorName":"高家诚"},{"authorName":"王远亮","id":"5b83b545-ca9a-4856-8d0a-be9462bd7ac5","originalAuthorName":"王远亮"},{"authorName":"王勇","id":"8f672802-2ba0-44d0-9d65-824dad93d74a","originalAuthorName":"王勇"},{"authorName":"戴彩云","id":"3c048ad6-4bbd-4239-9033-01d31aad66a6","originalAuthorName":"戴彩云"}],"doi":"10.3969/j.issn.1673-2812.2003.04.009","fpage":"503","id":"ddc08e25-1744-483b-acd8-7aa7b27ab3b1","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"22b06e6e-8dde-4c8f-b8bd-68a0db9a83d4","keyword":"激光","originalKeyword":"激光熔覆"},{"id":"2c3487b8-00db-4157-9414-2c5dcb59fec4","keyword":"生物陶瓷涂层","originalKeyword":"生物陶瓷涂层"},{"id":"983fabef-912e-4534-ba66-be1b18aca652","keyword":"温度场","originalKeyword":"温度场"},{"id":"cba87bfb-4f88-4e31-b980-dfa8cf187cbf","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"clkxygc200304009","title":"激光生物陶瓷涂层温度场数值模拟","volume":"21","year":"2003"},{"abstractinfo":"对铜合金表面进行激光镍基合金,能够有效改善铜基件的性能.以镍基合金为材料,对铜合金基件进行激光实验;基于有限差分法来构建过程中温度场数字图像的二维数学模型,对边界条件和基体内部相变潜热做数值化处理;最后对实验实际测量值和模拟计算值进行分析.结果表明,铜合金表面激光镍基合金的冶金结合良好,证明了提出的温度场计算模型精确度高、稳定可靠.","authors":[{"authorName":"孙建召","id":"19bec4f9-f3d5-4315-8f82-bb4c6931be63","originalAuthorName":"孙建召"},{"authorName":"周晓娟","id":"eb7ce435-06be-4241-aa41-3d9ef5e20cc3","originalAuthorName":"周晓娟"}],"doi":"10.3969/j.issn.1001-3849.2017.04.004","fpage":"13","id":"809972d8-e5c5-43b4-ac6c-e319ade16051","issue":"4","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"51b5f99b-80f3-4847-b6a1-958d91d622f7","keyword":"激光","originalKeyword":"激光熔覆"},{"id":"736ad628-894c-4a95-b875-543d9794c086","keyword":"镍基合金","originalKeyword":"镍基合金"},{"id":"6904a097-462e-4efd-aff1-6b50f53e68ca","keyword":"温度场","originalKeyword":"温度场"},{"id":"0d70c60c-cfef-4ab2-89cb-b9645003032d","keyword":"模拟分析","originalKeyword":"模拟分析"},{"id":"79bf9026-3c90-4172-b264-60e20a35b7cf","keyword":"铜合金","originalKeyword":"铜合金"}],"language":"zh","publisherId":"ddjs201704004","title":"铜合金表面激光温度场数值图像模拟分析","volume":"39","year":"2017"},{"abstractinfo":"本文建立了二维准稳态激光熔池流温度场数值模型, 除考虑对流换热外, 模型还考虑了局部大变形自由表面, 在贴体正交曲线坐标系下采用了非正交错网格SIMPLE算法离散求解动量方程, 计算出了激光熔池自由表面形状和温度场, 速度及局部特征凝固参数, 数值结果表明, 表面张力温度系数αγ/αT和扫描速率u0对熔池自由表面形状及熔池内温度分布, 速度分布有重要影响.","authors":[{"authorName":"曾大文","id":"21df8c7a-db61-48bd-a252-9f7eb4a6235f","originalAuthorName":"曾大文"},{"authorName":"谢长生","id":"608b7a5d-dedc-4feb-91eb-040392fb1de9","originalAuthorName":"谢长生"}],"categoryName":"|","doi":"","fpage":"604","id":"3b4f7368-91ba-420d-bc3a-5dbf8fcabc93","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"95faa485-5235-4085-8050-3daa3adf8d8e","keyword":"激光","originalKeyword":"激光熔覆"},{"id":"e496d963-7dce-45fe-8edc-bc98ca9072c6","keyword":"null","originalKeyword":"null"},{"id":"6be927df-8065-4671-8f2b-5455fc28c6d8","keyword":"null","originalKeyword":"null"},{"id":"79102913-def2-4b62-bd2f-92a405189d3a","keyword":"null","originalKeyword":"null"},{"id":"2e44aeac-d9a7-430c-9a67-f0f8ae662119","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_1999_6_22","title":"激光溶池二维准稳态流温度场数值模拟","volume":"35","year":"1999"},{"abstractinfo":"提出了一种送粉激光覆层表面形状及厚度的计算模型.将过程中固相区、两相区和液相区作为一连续介质,用非稳态固液相变统一模型来描述其流温度场,并采用固定网格移动坐标来处理带移动热源的流动与传热问题.能量方程用显焓表示,有关潜热的非稳态项与对流项均做为其源项处理.用 Lambert- Beer定理和米氏理论计算粉末流与激光光束的相互作用,使模拟适用于送粉浓度较大的情形.数值模拟程序是在流体动力学软件 PHOENICS基础上,通过添加源项、边界条件、覆层轨迹计算以及激光束和粉末流相互作用等相应模块实现.对钢基底上钴基合金 Stellite 6进行模拟所得到的计算结果与实验结果基本一致.","authors":[{"authorName":"黄延禄","id":"0fb3c791-0b67-4c5d-863c-376f028332ca","originalAuthorName":"黄延禄"},{"authorName":"邹德宁","id":"b306f691-f0df-4da9-8d9b-6b2a748761cd","originalAuthorName":"邹德宁"},{"authorName":"梁工英","id":"3d8e502e-19d8-4d73-9164-b42d20c89188","originalAuthorName":"梁工英"},{"authorName":"苏俊义","id":"430a5fd4-e5a1-41b5-9ebf-d2e97868a6ea","originalAuthorName":"苏俊义"}],"doi":"","fpage":"330","id":"5af505ed-33a8-4afa-8cac-2a4a6b96bec4","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"28f0df5f-21a2-4a42-9f4b-539f865c6de2","keyword":"送粉","originalKeyword":"送粉"},{"id":"5c033a02-c95b-4c1c-8705-0e7ec8fd4266","keyword":"激光","originalKeyword":"激光熔覆"},{"id":"dc218c38-5f17-4442-879f-f485158aefb0","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"f7a9866e-64b5-4df5-9b67-14019d55b072","keyword":"轨迹","originalKeyword":"熔覆轨迹"},{"id":"df663126-bab8-4703-9eb1-28659cd2efb1","keyword":"温度场","originalKeyword":"温度场"}],"language":"zh","publisherId":"xyjsclygc200305003","title":"送粉激光过程中轨迹及流温度场数值模拟","volume":"32","year":"2003"},{"abstractinfo":"采用ADPL参数化语言,综合考虑热源模型、材料热物性参数、相变潜热、边界条件等因素,建立了连续移动高斯热源作用下TC11表面激光MCrAlY涂层三维瞬态温度场数值模型。实验结果测量值与模拟计算值的对比表明,建立的温度场数值模型具有很好的可靠性。同时,在分析涂层品质的基础上,基于该模型对TC11表面激光MCrAlY涂层的激光工艺参数进行了预报及优化,得出较优的激光工艺参数为:激光功率1200 W、光斑直径2 mm、扫描速度400 mm/min。","authors":[{"authorName":"沈清","id":"586979be-80f8-4628-b5be-348fe3271975","originalAuthorName":"沈清"},{"authorName":"王宏宇","id":"347c5e8e-c6c6-419c-abd2-7652504ad549","originalAuthorName":"王宏宇"},{"authorName":"金镜","id":"b5b75179-e31c-46c5-b8c0-e9ea44418ca7","originalAuthorName":"金镜"},{"authorName":"吴志奎","id":"2a7b0c47-7502-4976-bb2d-b406f55d7fca","originalAuthorName":"吴志奎"},{"authorName":"程满","id":"008c7c75-b5a9-4af8-b3d2-520f3d70a915","originalAuthorName":"程满"}],"doi":"","fpage":"73","id":"6179ad77-c06f-4a90-8469-97d04a1683aa","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"5c008d3d-a457-4f65-9c96-5679a8b6f20d","keyword":"TC11合金","originalKeyword":"TC11合金"},{"id":"9e1eb4e2-9355-4325-a7bf-6fd9076e75cc","keyword":"激光","originalKeyword":"激光熔覆"},{"id":"1a7eea9e-0aa6-4759-b49c-9332b853ab45","keyword":"MCrAlY涂层","originalKeyword":"MCrAlY涂层"},{"id":"a1daed9d-bde0-4fef-bec8-84d597d7cef2","keyword":"温度场模拟","originalKeyword":"温度场模拟"},{"id":"d261a3d1-68d4-47ed-b2d2-d7dc99980815","keyword":"工艺参数优化","originalKeyword":"工艺参数优化"}],"language":"zh","publisherId":"bqclkxygc201401029","title":"TC11表面激光MCrAlY涂层温度场模拟及参数优化","volume":"","year":"2014"},{"abstractinfo":"在分析了预置式激光表面边界传热特点的基础之上,建立了简化的三维温度场分析模型,模拟激光模压预置层时工件的瞬态温度场;同时,在温度场模拟的基础上提出了以界面定点热循环曲线的最高温度达到特定金属的熔点作为判断预置层与基体间形成良好冶金结合的标准,并依据此标准预测了预置式激光表面时的工艺参数范围.结果表明,模拟预测的工艺参数范围与实际加工的最佳参数较为接近,对预置式激光表面的工艺参数选择具有指导意义.","authors":[{"authorName":"陈泽民","id":"0bd8eb99-d8c8-4831-9686-6b41ede02a5a","originalAuthorName":"陈泽民"},{"authorName":"曾凯","id":"6f0d7d8f-a712-4f6a-b9d7-f7b6b06d7bd2","originalAuthorName":"曾凯"},{"authorName":"廖丕博","id":"a5ee7c7d-1228-49dd-b480-36813575fe36","originalAuthorName":"廖丕博"},{"authorName":"周佳训","id":"6ee3a324-6d49-486d-877d-7232a5eea7ff","originalAuthorName":"周佳训"}],"doi":"","fpage":"188","id":"055fa797-a6ae-4776-a569-fb7a146f8303","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"e3370e4a-1e69-4891-a3bc-46d063cecc33","keyword":"激光","originalKeyword":"激光熔覆"},{"id":"c6c9cde1-4d57-4595-b18a-db3b9de6a5b3","keyword":"温度场模拟","originalKeyword":"温度场模拟"},{"id":"b328bb10-b59a-4bf7-8f5e-cafa808439c3","keyword":"参数预测","originalKeyword":"参数预测"}],"language":"zh","publisherId":"jsrclxb200901043","title":"激光模压预置层的温度场模拟与参数预测","volume":"30","year":"2009"},{"abstractinfo":"利用旋转Gauss曲面体新型热源模型,忽略深激光焊时小孔对传热的影响,建立了移动激光热源作用下的三维数学模型.利用PHOENICS3.4软件,模拟了SUS304不锈钢深激光焊接热过程的温度场和熔池熔合线形状,得到了不同焊接速度下的温度场分布云图和\"钉头\"状的熔池形状.数值模拟结果与试验结果基本吻合.","authors":[{"authorName":"张瑞华","id":"a1756c30-c521-46d7-b126-699f9470f01c","originalAuthorName":"张瑞华"},{"authorName":"樊丁","id":"e24c3da9-3d71-4682-a28c-88dabe80ee62","originalAuthorName":"樊丁"},{"authorName":"片山聖二","id":"e7fdd0fc-45c0-459f-b151-ceb1c14b29c5","originalAuthorName":"片山聖二"}],"doi":"10.3969/j.issn.1000-3738.2007.02.022","fpage":"71","id":"c47b3655-eb05-4785-8406-4c3eed933be9","issue":"2","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"5a3e9975-273f-4424-837d-d063fe4ca90f","keyword":"激光焊接","originalKeyword":"激光焊接"},{"id":"d42ea722-c09e-45fc-bce7-9c3216d3fa22","keyword":"熔池","originalKeyword":"熔池"},{"id":"6fd5d01b-cc51-4dd5-ac6b-32a127be308b","keyword":"温度场","originalKeyword":"温度场"},{"id":"eeea060a-f3b2-4f7f-a718-b6bc249203b5","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"jxgccl200702022","title":"深激光焊接熔池温度场数值模拟","volume":"31","year":"2007"},{"abstractinfo":"根据传热学理论和数值模拟方法研究温度场的分布规律,在考虑了热物性参数、换热系数、相变潜热随温度变化的因素,应用ANSYS有限元软件的参数化设计语言建立了45钢表面激光重连续移动三维瞬态温度场有限元模型.结果表明:提高激光功率对增大相变硬化区效果不大,反而形成较大的熔池而使重表面粗糙.与激光功率相比,激光扫描速度对试样温度场的影响较小.经过激光重后,形成重区、相变硬化区和基体三个区域.实验结果较好地验证了模拟结果,表明所建立的温度场计算模型是正确和可靠的.通过该计算模型,可以掌握金属表面激光重过程加热和冷却规律,为制备高性能表面改性层选择合适的工艺参数提供依据.","authors":[{"authorName":"田宗军","id":"43fbe8ac-38cb-4323-8e5c-06417dcefc1c","originalAuthorName":"田宗军"},{"authorName":"王东生","id":"db20b2fd-f577-4709-869c-b55f0a103afa","originalAuthorName":"王东生"},{"authorName":"黄因慧","id":"279d9b3f-b916-47c6-a125-99d56c9f638f","originalAuthorName":"黄因慧"},{"authorName":"沈理达","id":"164b8976-4d86-40ad-8ebb-73077dce501e","originalAuthorName":"沈理达"},{"authorName":"刘志东","id":"a6766e34-379e-4bb5-8149-9c1b604a88c8","originalAuthorName":"刘志东"},{"authorName":"陈勇","id":"ea1cbe7e-6e04-4c35-8e0f-850113592c40","originalAuthorName":"陈勇"}],"doi":"","fpage":"173","id":"eb8b9dda-3c58-419e-b21f-5fae1aa85cfe","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"9198a889-9225-4078-b53d-b722ff231f6f","keyword":"激光重","originalKeyword":"激光重熔"},{"id":"e6156900-89f6-4a18-979f-e66855956f98","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"3a49a34d-5bf3-4bbf-b450-b48fc405ea90","keyword":"ANSYS有限元","originalKeyword":"ANSYS有限元"},{"id":"f001d6e7-1306-47ee-a321-038df22e3a3a","keyword":"温度场","originalKeyword":"温度场"},{"id":"cc6ed44e-4310-4fae-8f81-1a3ff92226e6","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"jsrclxb200806039","title":"45钢表面激光重温度场数值模拟","volume":"29","year":"2008"},{"abstractinfo":"利用ANSYS软件建立预置式粉层激光反应数值模拟模型,考虑了相变潜热、辐射对流散热、表面效应单元等因素的影响;在不同的工艺参数下,用该模型对激光反应碳化物陶瓷涂层温度场进行了计算,分析了整个激光加工过程中温度场的变化情况。结果表明:激光功率和扫描速度对基体熔化厚度以及覆层宽度的影响都比较显著;激光功率是造成覆层较大温度梯度的主要因素;有限元模拟得到的最佳工艺参数得到了试验验证。","authors":[{"authorName":"李健","id":"7ad51ab6-0a44-486e-a554-ad513c9c68e4","originalAuthorName":"李健"},{"authorName":"尹莉","id":"9343a886-7798-447a-9d40-2946eb1c1c2f","originalAuthorName":"尹莉"},{"authorName":"李文戈","id":"6bbf1580-df74-4da2-b683-24717a3071d8","originalAuthorName":"李文戈"},{"authorName":"吴钱林","id":"23fd57b8-e511-423b-98da-6a9ece9753ec","originalAuthorName":"吴钱林"}],"doi":"","fpage":"86","id":"53c0857d-d0b9-40a2-acdb-277615efcd08","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"193e5b20-6184-41f0-b394-ca4e84b39ce1","keyword":"激光反应","originalKeyword":"激光反应熔覆"},{"id":"110973a4-c7f9-4540-ad8b-728f6b5e5572","keyword":"有限元模拟","originalKeyword":"有限元模拟"},{"id":"4092f65c-493c-4e62-a722-794b1987be29","keyword":"温度场","originalKeyword":"温度场"},{"id":"a05096da-bb0e-4b42-b4b7-f3e42d12dac8","keyword":"预置涂层","originalKeyword":"预置涂层"}],"language":"zh","publisherId":"jxgccl201206024","title":"激光反应碳化物陶瓷涂层温度场的有限元模拟","volume":"36","year":"2012"}],"totalpage":7213,"totalrecord":72130}