{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了掺杂稀土元素Nd对ITO粉末粒径大小、电学及光学性能的影响.实验结果表明,掺入Nd后在形貌上表现为随着掺杂量的增加,ITO粉末的粒径变小;在光学性能上表现为ITO粉末位于500-1000 cm-1的红外吸收峰向短波方向发生蓝移;在电学性能上表现为随着掺杂量的增加,ITO粉末的电阻率逐渐增加.","authors":[{"authorName":"冉绍兵","id":"19613552-c975-48aa-8ea4-17c2e877d421","originalAuthorName":"冉绍兵"},{"authorName":"樊刚","id":"6c063a9b-82cd-4ccc-a898-ea41c9c3d510","originalAuthorName":"樊刚"},{"authorName":"张家涛","id":"c0e8db28-a738-4b74-9df2-2b378aeb62d8","originalAuthorName":"张家涛"}],"doi":"10.3969/j.issn.1007-4252.2007.05.013","fpage":"476","id":"f5308807-6b1d-47b2-a78c-1e349eedc78e","issue":"5","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"f4917a94-41e9-4919-96f2-fdca877ad6a5","keyword":"ITO","originalKeyword":"ITO"},{"id":"a6fed722-35e4-4530-8626-cec070614b09","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"523d2d8a-5bbd-4eb9-9dd6-5d161ae7ab68","keyword":"性能","originalKeyword":"性能"},{"id":"144eadf8-90c3-4d13-9a74-28cb3fbac970","keyword":"均相沉淀法","originalKeyword":"均相沉淀法"}],"language":"zh","publisherId":"gnclyqjxb200705013","title":"Nd掺杂对ITO粉体性能的影响","volume":"13","year":"2007"},{"abstractinfo":"采用基于密度泛函理论的第一性原理研究了 N掺杂, Nd掺杂,和Nd/N共掺杂对锐钛矿相TiO2晶格参数、能带结构、电荷布居、电子态密度和光吸收性质的影响.结果表明,杂质的引入不同程度的改变了TiO2的晶格参数,Nd的掺杂使TiO6八面体畸变最大;N掺杂TiO2使带隙宽度减小,且在价带顶出现杂质能级;Nd掺杂和Nd/N共掺杂不仅使TiO2带隙宽度减小并在其价带和导带之间出现了空带,空带主要由Nd原子的4f轨道能级所贡献;由于禁带宽度的减小和杂质能级的出现使得掺杂后TiO2的吸收光谱的吸收边向可见光方向移动,增加了物质对光吸收的响应范围.","authors":[{"authorName":"张季","id":"8fb4f6d6-6acf-4252-b061-18f541695a5a","originalAuthorName":"张季"},{"authorName":"张德明","id":"804b94da-35f1-40c3-93f9-862797f92bed","originalAuthorName":"张德明"},{"authorName":"殷绍唐","id":"e9128ed2-81e6-47e6-92c0-91c126b1cede","originalAuthorName":"殷绍唐"}],"doi":"","fpage":"722","id":"0c09fba3-3c54-4e5e-88fc-a64cf65b0305","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e212cf56-b0d7-443b-b96a-5c8af9c59814","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"40e9a658-59ea-46ea-93fc-cc5dae79f8ef","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"74afbe60-d18b-49a0-bdfb-e73fb6506c95","keyword":"第一性原理","originalKeyword":"第一性原理"},{"id":"62185e22-1b59-429b-b960-b48bf8c7af36","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"44eeb3c8-44ec-4ca6-9dbe-a0026169dcb3","keyword":"光学性质","originalKeyword":"光学性质"}],"language":"zh","publisherId":"rgjtxb98201704027","title":"Nd、N掺杂和Nd/N共掺杂锐钛矿相TiO2电子结构和光学性质的第一性原理研究","volume":"46","year":"2017"},{"abstractinfo":"采用溶胶-凝胶法制备稀土Nd掺杂钛酸钡纳米粉体.采用X射线衍射(XRD)、矢量网络分析仪等手段分别分析表征了样品的微结构和高频电磁特性.结果表明,Nd离子掺杂的钛酸钡样品在750℃温度下退火1h,结晶良好.随着Nd掺杂量的提高,晶粒细化.Nd离子掺杂后,在高频下钛酸钡纳米粉体的介电常数的实部略有减小,虚部峰值得到提高,复介电常数和复磁导率的峰位均发生蓝移,粉体材料在2~18GHz范围内的反射损耗得到提高,吸收频带拓宽明显.","authors":[{"authorName":"杨兵初","id":"0fcc831d-abdf-4d5b-a84b-be1b466cd509","originalAuthorName":"杨兵初"},{"authorName":"熊健","id":"d2594456-3398-421d-9730-a62147e7ff9b","originalAuthorName":"熊健"},{"authorName":"邓联文","id":"bb481827-9f7f-48ac-ba08-14de7156d63d","originalAuthorName":"邓联文"},{"authorName":"周聪华","id":"06742e12-9163-4c11-a79e-1d2a1f9025b7","originalAuthorName":"周聪华"},{"authorName":"左舜贵","id":"39239b87-d496-4f33-8c1f-d6e9f01e3627","originalAuthorName":"左舜贵"}],"doi":"","fpage":"778","id":"147d8c92-7782-4647-a151-255994abed59","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ff74925e-6971-45ce-9422-271f7a3f927d","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"974aa3a5-def1-49d3-8d26-dd13e02fc5a9","keyword":"钛酸钡","originalKeyword":"钛酸钡"},{"id":"d7e62ab5-07b2-42d7-9363-afd73019d085","keyword":"复介电常数","originalKeyword":"复介电常数"},{"id":"b524cfc0-dd78-492e-86ad-1edd7de69fa2","keyword":"复磁导率","originalKeyword":"复磁导率"},{"id":"8e78bbaf-293b-420f-a2c9-d51941a6d0ba","keyword":"吸波特性","originalKeyword":"吸波特性"}],"language":"zh","publisherId":"gncl201105002","title":"Nd掺杂对钛酸钡电磁及微波吸收特性影响研究","volume":"42","year":"2011"},{"abstractinfo":"采用溶胶凝胶-浸渍提拉法在304不锈钢表面制备了纯TiO2涂层与Nd掺杂TiO2涂层,采用SEM、XRD、EDS等测试方法对涂层的形貌、晶体结构、成分进行表征,采用tafel曲线测试涂层耐蚀性能.结果表明:Nd掺杂后,单颗粒子粒径减小,涂层更加均匀致密,TiO2与Nd掺杂TiO2均为锐钛矿结构.在光照条件下,Nd掺杂TiO2涂层的耐蚀性能高于纯TiO2涂层.","authors":[{"authorName":"朱晓东","id":"e6dd7fa0-7a05-43a3-ac4f-fa9df3c5575f","originalAuthorName":"朱晓东"},{"authorName":"冯威","id":"c60d58be-3bfe-4746-8004-73e2d8f678b4","originalAuthorName":"冯威"}],"doi":"","fpage":"1229","id":"a9ed1c9d-7012-458e-a125-fee1a9a49e00","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"0f0b2c69-d809-4249-8197-07dcab50fc52","keyword":"TiO2涂层","originalKeyword":"TiO2涂层"},{"id":"089e5409-9387-4999-b67d-c3ec44e2d0fd","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"1c9c3bae-be20-4ad4-8f33-001e5a77de9b","keyword":"tafel曲线","originalKeyword":"tafel曲线"},{"id":"15fbb10d-5d15-4c3c-934d-b6fbb611e708","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"}],"language":"zh","publisherId":"gsytb201505009","title":"Nd掺杂TiO2涂层制备与耐蚀性能研究","volume":"34","year":"2015"},{"abstractinfo":"采用密度泛函平面波超软赝势方法,系统研究了Nd掺杂前后金红石相TiO2的电子结构变化,计算结果表明:Nd掺杂使TiO2的电子态发生重新分布,分能带明显增加;在导带的下方出现了一些新的电子态,分波态密度的结果进一步证实,这些新的态归属于Nd 4d轨道;金红石TiO2的带隙引Nd 4f态的引入而明显降低,并导致材料的带隙减小;Nd掺杂前后金红石相TiO2的紫外-可见漫反射光谱的测试结果表明Nd掺杂TiO2的紫外可见吸收光谱发生红移.","authors":[{"authorName":"王松","id":"f384ed88-fbb0-45a9-9724-d80b0ea5f802","originalAuthorName":"王松"},{"authorName":"谢颖","id":"60d0b73d-0e2b-4c98-8503-6c5f8a971a83","originalAuthorName":"谢颖"},{"authorName":"于忠臣","id":"ab9877ad-e232-41df-8899-b43079227886","originalAuthorName":"于忠臣"},{"authorName":"张雪娇","id":"e333d3f9-0675-41d0-bdb0-f09e23ce462b","originalAuthorName":"张雪娇"},{"authorName":"马冬","id":"0b3b4f9e-8375-44a8-866d-f18ad5509302","originalAuthorName":"马冬"},{"authorName":"曹富达","id":"5cb79ce8-6cb6-4138-a6c9-101249990133","originalAuthorName":"曹富达"}],"doi":"","fpage":"1867","id":"ad091d2c-8006-4dbe-ac1d-722cc80cdcd8","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a9faf219-45d3-4699-9fd2-e6c5d9f06673","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"a2b55147-4858-410f-91cf-e9d07163b6c2","keyword":"金红石","originalKeyword":"金红石"},{"id":"138f603e-5570-43f9-a98f-31dbb808d57a","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"4c8475cb-720f-4bb4-9192-5b324bf43b20","keyword":"第一性原理","originalKeyword":"第一性原理"}],"language":"zh","publisherId":"xyjsclygc201408015","title":"Nd掺杂金红石TiO2的电子结构及光学性质的研究","volume":"43","year":"2014"},{"abstractinfo":"以钛酸丁酯为原料,采用溶胶凝胶法合成了纯TiO2与Nd掺杂TiO2纳米粉体,对其进行了350℃至850℃的热处理.利用XRD、SEM、和EDS对粉体的晶型结构,微观形貌和元素成分进行表征,研究了Nd掺杂对TiO2晶粒尺寸以及晶型转变的影响.结果表明:样品晶粒尺寸达到纳米级别,Nd掺杂后TiO2晶粒尺寸减小.纯TiO2在550℃时已经有金红石生成,750℃完成锐钛矿向金红石的转变;Nd掺杂TiO2在750℃时仍然是锐钛矿,850℃时有少许金红石生成,Nd掺杂提高了TiO2锐钛矿结构的热稳定性.","authors":[{"authorName":"朱晓东","id":"d3d7b60f-0baa-4d91-aa81-fd0aaf6e2178","originalAuthorName":"朱晓东"},{"authorName":"宋慧瑾","id":"882f7928-5025-4dc1-ad5c-6da608f78f8e","originalAuthorName":"宋慧瑾"},{"authorName":"王明坤","id":"1e97844f-0cb2-4855-9e20-068f614c7841","originalAuthorName":"王明坤"},{"authorName":"冯威","id":"28bd126d-4985-4c64-ae0a-f73f7032190b","originalAuthorName":"冯威"},{"authorName":"王耀翰","id":"1db60a73-de80-4366-a10d-5435e37aad2e","originalAuthorName":"王耀翰"},{"authorName":"莫小波","id":"8d7f0a36-5dff-4dc6-a43a-f177d6c15581","originalAuthorName":"莫小波"},{"authorName":"朱伦","id":"31c8306b-c403-4877-9442-85303956683b","originalAuthorName":"朱伦"}],"doi":"","fpage":"2147","id":"a5e7ffd5-67ed-477e-a4be-f311146043bf","issue":"8","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"3e4d6075-28bf-43ab-9e8f-ec3ac21bb7fe","keyword":"纳米TiO2","originalKeyword":"纳米TiO2"},{"id":"20191664-fbbb-41a0-a32b-ffdd3818d427","keyword":"溶胶凝胶法","originalKeyword":"溶胶凝胶法"},{"id":"3027d4f2-4ade-4be0-8b5b-377bcd24aa4e","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"5bdb810e-c40c-451f-a53d-f5b558c6b177","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"2b3e7563-1d6e-4cc7-a224-b6ce3892f8c7","keyword":"锐钛矿","originalKeyword":"锐钛矿"}],"language":"zh","publisherId":"rgjtxb98201608029","title":"高热稳定性锐钛矿型Nd掺杂纳米TiO2的制备与表征","volume":"45","year":"2016"},{"abstractinfo":"用溶胶-凝胶法制备了不同浓度(0、1%、3%、5%(摩尔分数))的Nd掺杂钛酸锶钡(Ba0.65Sr0.35TiO3,BST)薄膜.XRD结果表明,经700℃退火1h后,样品晶化为完整的多晶钙钛矿结构,平均晶粒尺寸为20nm.原子力显微镜(AFM)观察发现,薄膜表面均匀致密,光滑平整.室温光致发光谱(PL)显示在808nm氩离子激光激发下,Nd掺杂的BST薄膜在876、1060、1337nm处有较强的近红外(NIR)发光,分别对应于Nd3+的4F3/2-4I9/2、4F3/2-4I11/2、4F3/2-4I13/2跃迁.这些结果表明Nd掺杂BST薄膜在激光器和光放大器等光电器件领域有着广泛的应用前景.","authors":[{"authorName":"汪竞阳","id":"4404ef91-ebd6-42a1-b6c8-4bf07f5481b3","originalAuthorName":"汪竞阳"},{"authorName":"章天金","id":"78036e36-3e90-4057-8f9b-8bb834783cca","originalAuthorName":"章天金"},{"authorName":"江娟","id":"8df4ffc0-bb2d-42dc-8306-ca9c98a12e8d","originalAuthorName":"江娟"},{"authorName":"潘瑞琨","id":"a4b6c823-b2ef-415b-b57c-7bebc474f82d","originalAuthorName":"潘瑞琨"},{"authorName":"詹芬","id":"fb2b819a-5f23-4d58-9e57-29f59f9825ee","originalAuthorName":"詹芬"}],"doi":"","fpage":"194","id":"9838b9ff-b44e-4710-a42c-d1b63b94426a","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c94b1af9-759d-40cb-a707-dfd985c7384c","keyword":"BST薄膜","originalKeyword":"BST薄膜"},{"id":"f7acbca2-5d65-4080-a79b-34cc6af4ad99","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"55ab294b-14f4-47b3-9b36-4f63692036a9","keyword":"微结构","originalKeyword":"微结构"},{"id":"46cc8987-c47c-489a-a806-a47c79aa3f49","keyword":"光致发光","originalKeyword":"光致发光"}],"language":"zh","publisherId":"gncl200902005","title":"稀土Nd掺杂Ba0.65Sr0.35TiO3薄膜的微结构与光致发光性能研究","volume":"40","year":"2009"},{"abstractinfo":"通过射频磁控溅射技术在Si(111)衬底上制备了未掺杂和Nd掺杂ZnO薄膜,研究了衬底温度、氧分压以及Nd不同掺杂浓度等工艺参数对薄膜的影响.薄膜的结构和表面形貌通过XRD分析和AFM观测,表明制备的薄膜为ZnO:Nd纳米多晶薄膜,其表面形貌粗糙,不同沉积条件对薄膜生长有很大的影响.在纯氩气氛中、衬底温度为300℃的条件下,ZnO:Nd薄膜具有c轴择优取向.","authors":[{"authorName":"文军","id":"e781ea94-523f-4841-ae2f-7f0c27b4891d","originalAuthorName":"文军"},{"authorName":"陈长乐","id":"0d0b0be7-88b9-47d4-9f8a-a4e61467b027","originalAuthorName":"陈长乐"},{"authorName":"潘峰","id":"1ede9bbe-af01-4096-a58f-4580e85980fe","originalAuthorName":"潘峰"}],"doi":"","fpage":"761","id":"0f11aef0-2756-4054-b533-cd67e1ea7ba6","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"fca374d3-b261-4a9e-8cbb-af35842c5712","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"395b6cce-d29a-4221-ac96-07c60ea17872","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"f4482fe1-b178-449e-990d-9f1d9e2ee511","keyword":"X射线衍射分析","originalKeyword":"X射线衍射分析"},{"id":"496cf12e-4074-4c05-b338-1c2ca0f3e5cb","keyword":"原子力显微镜","originalKeyword":"原子力显微镜"},{"id":"80050774-679a-4f66-a790-13a38b3481dc","keyword":"射频磁控溅射","originalKeyword":"射频磁控溅射"}],"language":"zh","publisherId":"gncl200805017","title":"RF溅射钕掺杂ZnO薄膜工艺与结构研究","volume":"39","year":"2008"},{"abstractinfo":"采用微乳液快速冷冻沉淀法制备出Nd掺杂非晶态氢氧化镍粉体材料, 采用Raman, XRD, SEM和IR对其结构形态进行了表征分析, 并对其交流阻抗谱(EIS)和充放电性能进行了测量. 结果发现, Nd的掺入使非晶态氢氧化镍结构缺陷增多, 无序性增强, 电化学反应的电荷转移电阻降低, 材料的电化学性能和结构稳定性提高. 样品作为MH-Ni电池正极材料在恒流80 mA·g-1下充电5 h, 40 mA·g-1放电, 终止电压为1.0 V时, 放电电压稳定于1.240 V, 开路电位为1.474 V, 放电容量高达348.89 mAh·g-1, 并具有优良的电化学循环性能.","authors":[{"authorName":"谷得龙","id":"c3ec8f87-c04a-4dba-b282-b09e86c74376","originalAuthorName":"谷得龙"},{"authorName":"刘长久","id":"e491793a-a37e-473c-8dd7-ae58b68f98f3","originalAuthorName":"刘长久"},{"authorName":"刘爱芳","id":"fea52f01-6c79-4123-8989-2e89cfa2f9da","originalAuthorName":"刘爱芳"}],"doi":"10.3969/j.issn.0258-7076.2007.02.027","fpage":"261","id":"94469420-655a-4273-8792-cfa3d95ccc04","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"e2976cb3-9105-46d6-aaa6-3883b9cea0e2","keyword":"微乳液快速冷冻沉淀法","originalKeyword":"微乳液快速冷冻沉淀法"},{"id":"2fad8b79-bec8-4deb-a6f7-3d6f5edacf99","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"9d54c159-360b-42c1-8d0a-2680073d982c","keyword":"非晶态氢氧化镍","originalKeyword":"非晶态氢氧化镍"},{"id":"3921b816-ad5e-48a7-b3a9-a02446617880","keyword":"电化学性能","originalKeyword":"电化学性能"},{"id":"1cd05b6c-f860-4717-ac52-f30d9df06fb2","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"xyjs200702027","title":"钕掺杂非晶态Ni(OH)2的电化学性能","volume":"31","year":"2007"},{"abstractinfo":"用溶胶-凝胶法制备了SrBi_4Ti_4O_(15)陶瓷材料,研究了烧结温度、铋含量及掺杂Nd对SrBi_4Ti_4O_(15)陶瓷结构、热扩散率及介电性能的影响.结果发现,SrBi_4Ti_4O_(15)陶瓷材料的热扩散率和介电常数随烧结温度的升高而增大,最佳烧结温度为1100℃,铋含量过量达10%时,SrBi_4Ti_4O_(15)陶瓷的热扩散率和介电常数最大.随着掺杂量Nd的增加,SrBi_4Ti_4O_(15)陶瓷的热扩散率和介电常数随之增大.","authors":[{"authorName":"于峰","id":"b74492a1-3778-40f8-99c1-917e4db11482","originalAuthorName":"于峰"},{"authorName":"王培吉","id":"3e41b314-364c-4060-bb3d-a90606f6cdad","originalAuthorName":"王培吉"},{"authorName":"李萍","id":"24f2da42-ba97-4cb8-8ea2-f2d723f0c3bf","originalAuthorName":"李萍"},{"authorName":"范素华","id":"853b71b7-768d-4260-a285-ff60474415f1","originalAuthorName":"范素华"},{"authorName":"张奉军","id":"98d9796e-ee79-44f2-92c2-41efaaccea73","originalAuthorName":"张奉军"}],"doi":"","fpage":"2014","id":"ea6d8a89-5c33-4d5e-ae20-41526f0a61ce","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"51b029c1-1921-4660-940c-93bebf765e63","keyword":"SrBi_4Ti_4O_(15)材料","originalKeyword":"SrBi_4Ti_4O_(15)材料"},{"id":"6e5263f9-e054-4962-b392-44f9a10fef37","keyword":"热导率","originalKeyword":"热导率"},{"id":"4c5996e4-cdf8-4c5f-ad26-51a696e6c25b","keyword":"Nd掺杂","originalKeyword":"Nd掺杂"},{"id":"30b8d610-7632-4d11-83af-ccaf810a8711","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"gncl200912020","title":"SrBi_4Ti_4O_(15)陶瓷材料介电和导热性能的研究","volume":"40","year":"2009"}],"totalpage":1066,"totalrecord":10655}