{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":1,"startPagecode":1},"records":[{"abstractinfo":"陶瓷材料具有优异的耐磨、耐热及耐腐蚀性能,但脆性很高;钢铁材料具有良好的强度、韧性和可靠性,但耐热、耐磨、耐腐蚀等性能较差.将二者优点结合起来,可获得综合性能优异的复合材料.本文采用在金属表面衬瓷的新技术,制成一种\"铸钢表面衬瓷复合材料\".该复合材料基体是45号铸钢,具有中碳钢良好的塑、韧性和可靠性;表面由纳米复合陶瓷组成,表现出陶瓷的优异耐磨、耐热和耐腐蚀性.本文检测了该材料的耐磨性,利用SEM对衬瓷层的成分分布、显微组织和界面结构进行了研究.该复合材料衬瓷层厚度达到600 μm以上;沿垂直表面的方向由表及里,陶瓷相含量逐渐下降;界面无缝隙、无裂纹,结合紧密,是衬瓷层与基体结合强度高的主要原因.","authors":[{"authorName":"韩亚苓","id":"b31822a6-9141-43e8-b98d-d55a3f43ce2c","originalAuthorName":"韩亚苓"},{"authorName":"张翠敏","id":"06d25380-2193-415b-9fa2-38d331a7f6bf","originalAuthorName":"张翠敏"},{"authorName":"李启东","id":"efc9479a-d2aa-45ca-8f9d-7a9feffe2a90","originalAuthorName":"李启东"},{"authorName":"郭全英","id":"4bf58cda-a97f-4bde-a0dd-c6516986cca4","originalAuthorName":"郭全英"},{"authorName":"孙泰礼","id":"4ec9dea6-a8c1-44a2-9917-c2e59aeead0b","originalAuthorName":"孙泰礼"}],"doi":"","fpage":"812","id":"254e009b-dab9-4ae1-9692-403881706420","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"e4d31599-6e11-4f74-a9b4-2cbda146442c","keyword":"钢水余热","originalKeyword":"钢水余热"},{"id":"8aa7ad3a-23af-456c-8d21-997993a96cb1","keyword":"耐磨性","originalKeyword":"耐磨性"},{"id":"91efb2c5-e76b-4470-9d0d-02ccf2879901","keyword":"Fe-Ni-Al合金","originalKeyword":"Fe-Ni-Al合金"},{"id":"567b3fa8-33b0-4612-ba88-ebb3bd51b257","keyword":"复合陶瓷粉","originalKeyword":"复合陶瓷粉"},{"id":"74415d3f-82e0-41e4-a36f-1f0f34e68468","keyword":"衬瓷","originalKeyword":"衬瓷"}],"language":"zh","publisherId":"gsytb200804032","title":"金属表面衬瓷复合材料界面显微结构研究","volume":"","year":"2008"},{"abstractinfo":"使用压痕法研究ZrO2/Al2O3陶瓷的断裂韧性,通过实验分析放大倍数和载荷两个因素对试样M31和M34测量结果的影响.放大倍数低于600倍时,很难测量出实际裂纹尺寸,而在6000倍时测得了比较准确的裂纹尺寸.随着载荷的增加,样品M31断裂韧性对比误差逐渐降低,样品M34误差呈波浪式变化.选择最适宜的载荷,可得到最接近实际情况的KIC值;本文通过大量实验数据证实,样品M31最适宜的载荷范围在8~12 kg,M34的载荷范围在6~8 kg.裂纹的扩展形式包括沿相界断裂,沿晶界断裂和潜藏断裂.沿相界断裂消耗能量较低,对陶瓷材料强度和韧性贡献较小;沿晶界断裂消耗能量较高,对陶瓷材料强度和韧性贡献较大.","authors":[{"authorName":"毛亚男","id":"df66eb8e-eb31-4aa6-9ef4-1b5b87f7801c","originalAuthorName":"毛亚男"},{"authorName":"韩亚苓","id":"e978f4e4-092d-4b1b-8511-7384d94deb7f","originalAuthorName":"韩亚苓"},{"authorName":"王辰","id":"4c0dfd35-c2cd-4ac4-b2f5-fba64ab3e150","originalAuthorName":"王辰"},{"authorName":"刘丽娟","id":"33ba7d8b-d363-4b7b-8b9a-8ac0ed808b54","originalAuthorName":"刘丽娟"},{"authorName":"陶睿","id":"12e1c4a5-1fb8-4462-8639-7d7117cb459c","originalAuthorName":"陶睿"},{"authorName":"张志涛","id":"abc24f2c-9136-4eb5-9c54-82e1b485afb7","originalAuthorName":"张志涛"}],"doi":"","fpage":"2639","id":"530e3b1f-6bb0-4276-9387-a033a8fd0740","issue":"9","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"c10f2c2d-e65c-4364-8b12-e6dbb1b94f66","keyword":"压痕法","originalKeyword":"压痕法"},{"id":"ce682967-8eb1-49d0-8141-eb9d511b59b4","keyword":"断裂韧性","originalKeyword":"断裂韧性"},{"id":"685297a5-d3d8-42e8-995f-e6b9cea0d6a6","keyword":"载荷","originalKeyword":"载荷"},{"id":"7ef0d8d3-7648-4eea-9816-46883269fecc","keyword":"裂纹扩展","originalKeyword":"裂纹扩展"}],"language":"zh","publisherId":"gsytb201509041","title":"压痕法测量ZrO2/Al2O3陶瓷断裂韧性的研究","volume":"34","year":"2015"},{"abstractinfo":"氮化铝具有良好的热学、电学和机械等性能,是理想的电子封装材料和高性能陶瓷基板材料.本文研究了AlN加入量和烧结温度对Al2O3/AlN复相陶瓷相组成和显微组织的影响.结果表明该陶瓷在1400~ 1550℃烧结时,AlN被部分保留,少量氧原子进入AlN晶格,烧结生成4种铅锌矿结构新相,有利于提高复相陶瓷热导率;氮化铝含量和烧结温度的提高,有利于形成大尺寸晶粒.","authors":[{"authorName":"刘伟南","id":"70782ba1-5097-4ee0-8cd3-5235b772106d","originalAuthorName":"刘伟南"},{"authorName":"韩亚苓","id":"76cff2f6-4356-4d77-9196-84e8926863e5","originalAuthorName":"韩亚苓"},{"authorName":"刘玉微","id":"2053bcdc-1c8b-40c0-b2c8-f21cb018940d","originalAuthorName":"刘玉微"},{"authorName":"马智欣","id":"68b7cb97-4edc-4f2f-a8d3-0ad6e750b6ab","originalAuthorName":"马智欣"},{"authorName":"韩睿","id":"6d2d5d0c-b9fa-4bb8-a977-236cba7d5a29","originalAuthorName":"韩睿"}],"doi":"","fpage":"2052","id":"697fae6a-bde2-47e4-bee9-c4fe4db12c01","issue":"7","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"5d2375a6-d36c-4ba7-9c8a-d96790d7ae9a","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"ca7affa9-5658-43b0-beef-58649d231855","keyword":"氮化铝","originalKeyword":"氮化铝"},{"id":"bbe9aa14-aab5-4c4e-8889-666d30e405fc","keyword":"新相","originalKeyword":"新相"},{"id":"ab61e6c2-3ee4-457b-937e-1f599a7e8c46","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"gsytb201507056","title":"氧化铝/氮化铝陶瓷显微组织研究","volume":"34","year":"2015"},{"abstractinfo":"为了提高氧化铝陶瓷的抗热震性,将具有负膨胀系数的锂霞石加入到Al2O3中,通过无压烧结工艺,制备出了氧化铝-锂霞石复合抗热震陶瓷.结果表明,锂霞石加入量w(锂霞石)=20%,烧结温度为1500℃时,陶瓷样品能够承受钢水中1500℃温差(空冷)的热震破坏.采用SEM对陶瓷进行组织结构分析,发现在基体内部形成片状组织,这样的显微组织对提高陶瓷的抗热震性具有重要作用.","authors":[{"authorName":"张巍","id":"19bdc121-4ffe-4fa1-928f-0b3c59558303","originalAuthorName":"张巍"},{"authorName":"韩亚苓","id":"213f583b-f9a6-411c-b9d1-83a37c245116","originalAuthorName":"韩亚苓"},{"authorName":"吴嘉希","id":"0b7728f2-d2d0-4c69-807c-e5ba165e7c50","originalAuthorName":"吴嘉希"},{"authorName":"吴旭","id":"f9d1c939-15f5-4177-b5b3-b52b417191f2","originalAuthorName":"吴旭"}],"doi":"","fpage":"242","id":"9e2cc0dc-9879-47fc-8394-459cff5c6c38","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"f1d4498e-21ec-4687-a4fe-0d4a30123b74","keyword":"抗热震性","originalKeyword":"抗热震性"},{"id":"032481b8-06db-405f-a668-2fe4a60f8dda","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"6fa2fdd3-b22c-4dff-957f-506837839356","keyword":"锂霞石","originalKeyword":"锂霞石"},{"id":"7b0b5898-7c4f-43fa-8d81-dc1842aaa508","keyword":"负膨胀系数","originalKeyword":"负膨胀系数"}],"language":"zh","publisherId":"gsytb200802007","title":"氧化铝-锂霞石复合陶瓷在钢水中抗热震性研究","volume":"27","year":"2008"},{"abstractinfo":"钢水余热衬瓷技术操作简单、节约能源,且能够获得冶金结合界面的衬瓷层.自制了含Fe粉和不含Fe粉的复合粉,利用钢水余热技术浇铸衬瓷层,研究了Fe粉对衬瓷层形貌的影响,并分析了其影响的原因.研究表明:复合粉中Fe含量越高,制备过程中被氧化的也越多,衬瓷层表面越凹凸不平,复合粉中不含Fe时衬瓷层质量最好;不合Fe的合金粉中的Ni和Al在850℃生成了NiAl和Ni3Al,提高了衬瓷层质量.","authors":[{"authorName":"梁正奇","id":"e43cd396-d635-42e3-9393-a7f804e6b46a","originalAuthorName":"梁正奇"},{"authorName":"韩亚苓","id":"c52a9540-9e1f-450a-a914-4dd2ce7754c6","originalAuthorName":"韩亚苓"},{"authorName":"杨亮","id":"a2b0e50d-1188-4858-b126-55ab6c834e65","originalAuthorName":"杨亮"}],"doi":"","fpage":"54","id":"879eb97d-e329-45ec-b9c9-9a801ba5cb8d","issue":"12","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"cfc4c2ec-deae-4a1e-8b37-1780e3f56369","keyword":"衬瓷层","originalKeyword":"衬瓷层"},{"id":"0d969e58-e82d-4c1c-9d24-b89e7b46919e","keyword":"钢水余热","originalKeyword":"钢水余热"},{"id":"5cdac4bf-964c-492a-a515-3de7d887ebca","keyword":"浇铸","originalKeyword":"浇铸"},{"id":"ccebaa91-602e-4016-a048-f453559bf0e4","keyword":"金属陶瓷复合粉","originalKeyword":"金属陶瓷复合粉"},{"id":"7f773462-7eac-4534-80ea-0e6c2bac7559","keyword":"形貌","originalKeyword":"形貌"}],"language":"zh","publisherId":"clbh201012018","title":"复合粉中Fe粉对衬瓷层形貌的影响","volume":"43","year":"2010"},{"abstractinfo":"","authors":[{"authorName":"一生","id":"b762bafe-7247-4003-9f88-8b8a71dddfb2","originalAuthorName":"一生"}],"doi":"10.3969/j.issn.1000-6826.2002.06.023","fpage":"31","id":"b3ba560b-c191-47af-b567-d155a7980ce6","issue":"6","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"20e674a6-7f38-4424-9e18-483bc5d04b02","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"jssj200206023","title":"南开创始人张伯苓佚事","volume":"","year":"2002"}],"totalpage":1,"totalrecord":6}