{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对玉米秆、树叶、棉花秆和稻壳等四种生物质在不同条件下热解制备的焦进行了脱硫性能实验.结果显示,在所研究的四种生物质中,玉米秆焦的脱硫性能最佳,而稻壳焦的脱硫性能最差.热解温度是影响生物质焦脱硫性能的一个重要因素,随热解温度从400℃到600℃,焦的脱硫效率增加,但热解温度进一步增加到850℃时,焦的脱硫效率降低.热解速度亦影响焦的脱硫性能.快速热解制得的焦的脱硫效率比慢速热解的高.随烟气温度的升高,脱硫效率表现出减少的趋势.","authors":[{"authorName":"张军","id":"96929c05-d6b0-451a-884f-19eb0f6f6f09","originalAuthorName":"张军"},{"authorName":"林晓芬","id":"000b11da-775b-42e7-9334-849fee9343e2","originalAuthorName":"林晓芬"},{"authorName":"印佳敏","id":"b2c75ccf-33b4-4cb5-959f-d93bd0dcabe8","originalAuthorName":"印佳敏"},{"authorName":"范志林","id":"1b343d93-8a3f-4b3e-bd6c-83fde8b1faf2","originalAuthorName":"范志林"},{"authorName":"徐益谦","id":"e44223f3-dab4-417b-9d31-a50581b68427","originalAuthorName":"徐益谦"}],"doi":"","fpage":"537","id":"897a6634-1eb5-4b2c-8184-642f66829d54","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1b9e25d5-eae6-45b2-a0e4-11e021198743","keyword":"生物质","originalKeyword":"生物质"},{"id":"ec077340-f4e8-49fa-8173-db733a4fb489","keyword":"脱硫","originalKeyword":"脱硫"},{"id":"23ed5fc2-d9e3-4791-a543-ae9f6cc5c5dc","keyword":"焦","originalKeyword":"焦"},{"id":"51468feb-f058-44a9-903e-9c3689915ea3","keyword":"烟气温度","originalKeyword":"烟气温度"}],"language":"zh","publisherId":"gcrwlxb200503053","title":"生物质焦脱硫性能实验研究","volume":"26","year":"2005"},{"abstractinfo":"纯烧生物质锅炉高低温过热器都不太结渣而中温过热器结渣非常严重.为了探索中温过热器结渣的机理,本文对中温过热器上沉积了一年的完整焦块做了详细的SEM线扫描分析及XRD检测,得到了焦块沿渣体高度方向元素和物相分布,发现了焦块沿高度方向有明显的分层结构.文中详细探讨了生物质灰结渣机理,表达了结渣的形成发展过程,解释了中温过热器相对高低温过热器结渣严重的原因.","authors":[{"authorName":"刘洋","id":"b2fd6a37-d581-48fd-92ad-0eee76a1a914","originalAuthorName":"刘洋"},{"authorName":"刘正宁","id":"0805bdc5-45a0-4fdf-b7be-5e2ee9ad4aa6","originalAuthorName":"刘正宁"},{"authorName":"谭厚章","id":"0d175aa7-da3f-4e85-8011-60acd26d18a7","originalAuthorName":"谭厚章"},{"authorName":"陈二强","id":"2ffa91c0-db66-40e0-adc7-7b8f42c021b9","originalAuthorName":"陈二强"},{"authorName":"王学斌","id":"2916ba62-1e65-4f2e-a9dc-73dcba74dd20","originalAuthorName":"王学斌"},{"authorName":"牛艳青","id":"b25e9555-1df1-4510-954c-019bc78e2708","originalAuthorName":"牛艳青"},{"authorName":"徐通模","id":"48a81745-4d1e-4bbc-afc0-8870ae0466f0","originalAuthorName":"徐通模"}],"doi":"","fpage":"895","id":"1bfdd326-9bbe-4b6d-ade2-b8d55879218e","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"539f1b14-f91e-449e-a0d2-97e052ca3d70","keyword":"生物质","originalKeyword":"生物质"},{"id":"06541604-1731-4b8b-ac26-2dbe3863f477","keyword":"过热器","originalKeyword":"过热器"},{"id":"fd1615ac-f947-4253-9125-99560ada440f","keyword":"结渣机理","originalKeyword":"结渣机理"},{"id":"ba4a0042-111f-43a9-85db-59cc122c7a92","keyword":"燃烧","originalKeyword":"燃烧"}],"language":"zh","publisherId":"gcrwlxb201005045","title":"生物质灰结渣机理研究","volume":"31","year":"2010"},{"abstractinfo":"简述了近年来国内外利用生物质资源改性水性聚氨酯的发展情况,重点介绍了淀粉、植物油、松香等生物质原料改性水性聚氨酯的研究进展,概述了生物质改性水性聚氨酯在不同领域的应用,最后对生物质改性水性聚氨酯的发展趋势作了展望.","authors":[{"authorName":"崔淑芹","id":"40d6f69b-679e-4bf7-904f-adf00fb9edd9","originalAuthorName":"崔淑芹"},{"authorName":"王丹","id":"b3716131-423b-4f47-802a-47e32b8d1f9e","originalAuthorName":"王丹"},{"authorName":"商士斌","id":"0fcee687-95c4-4b93-8a6c-861703f8cf6d","originalAuthorName":"商士斌"},{"authorName":"徐徐","id":"6ef8bc63-6a1e-48d6-a374-b6647456a088","originalAuthorName":"徐徐"}],"doi":"","fpage":"85","id":"2da342e7-d476-4e9b-8818-d4365d477fe4","issue":"19","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ecf16a5f-381c-43ee-8b4b-9d5198056222","keyword":"生物质","originalKeyword":"生物质"},{"id":"b5d262a2-48fa-4f41-bc32-44dc4146bc82","keyword":"水性聚氨酯","originalKeyword":"水性聚氨酯"},{"id":"e16f4c7a-33c9-4864-a484-5fafb4e02577","keyword":"改性","originalKeyword":"改性"},{"id":"d97845e0-f147-47be-9485-f76a95ea31ca","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb201119018","title":"生物质改性水性聚氨酯的研究进展","volume":"25","year":"2011"},{"abstractinfo":"生物质气流床气化技术是一项新技术,生物质加压密相输送是需要解决的关键问题之一。本文在大型中试高压密相试验装置上进行两种特殊生物质粉料的输送试验,研究物料特性和操作参数对其流动特性的影响。试验结果表明,本试验系统输送生物质稳定可靠,质量流量随着输送差压和发料罐压力的升高增大。随表观气速增大两种生物质弯管当量长度系数K近似为定值,生物质1的K值大于生物质2,且生物质1的K值随输送差压的增加而增大;两种生物质的固相摩擦系数随着体积分数和接收罐压力的增大逐渐增大。","authors":[{"authorName":"许盼","id":"ad49075f-79e6-4d6c-b232-49f6012eb9fd","originalAuthorName":"许盼"},{"authorName":"陈晓平","id":"f2910ac7-ee4b-4a58-9b73-3f2da8226567","originalAuthorName":"陈晓平"},{"authorName":"梁财","id":"b3ad7986-aa47-42ea-922e-587838ceb905","originalAuthorName":"梁财"},{"authorName":"赵长遂","id":"72337cd0-ce23-4106-8b13-ea5ad5c833db","originalAuthorName":"赵长遂"},{"authorName":"徐贵玲","id":"8d42188a-06e5-49ff-aaa4-7f6ab8200fc9","originalAuthorName":"徐贵玲"},{"authorName":"蔡佳莹","id":"94eed1b3-aadd-45e1-94a4-aa9e59172707","originalAuthorName":"蔡佳莹"}],"doi":"","fpage":"801","id":"323d37e2-7dec-4ab7-a63f-01b3dbaf7390","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"70116e5b-11f4-4dd7-8d2f-9abbb67e0ca7","keyword":"生物质","originalKeyword":"生物质"},{"id":"d4b58a7f-15d8-47eb-b76a-e30ab11571bd","keyword":"气力输送","originalKeyword":"气力输送"},{"id":"3a6180d8-41f1-4433-a645-422dd937427a","keyword":"弯管当量系数","originalKeyword":"弯管当量系数"},{"id":"15e3bc46-61b7-4783-92cd-41ccdcf88587","keyword":"固相摩擦系数","originalKeyword":"固相摩擦系数"}],"language":"zh","publisherId":"gcrwlxb201205018","title":"生物质高压密相输送特性试验研究","volume":"33","year":"2012"},{"abstractinfo":"基于生物质部分氧化气化动力学参数难于采用热重分析仪进行研究,本文设计了一个移动床实验方案,样品槽携带生物质样品进入具有线性温度分布的炉膛中加热,并配合一定流量的空气与逐步升温的生物质反应,以达到连续稳定的部分氧化气化。求解动力学参数,需要为生物质提供稳定的升温速率,因此,本文着重研究生物质样品在线性温度分布的炉膛中的升温特性,研究了样品厚度、样品槽运动速度对样品升温特性的影响。在生物质进样速率一定的情况下,改变样品槽运动速度,得到生物质有稳定的升温特性,并且升温速率可控,能达到生物质部分氧化气化动力学实验研究的要求。","authors":[{"authorName":"黎柴佐","id":"4b4edcfd-4112-414d-b800-258c8f178b95","originalAuthorName":"黎柴佐"},{"authorName":"冉景煜","id":"c8fae99f-f60b-4447-971b-59fe039d7c19","originalAuthorName":"冉景煜"}],"doi":"","fpage":"1453","id":"c859ca5d-f3c0-4b06-b9bb-2cf0d82f4584","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8d9debf9-fe07-4356-95f3-65f7a5a2db5e","keyword":"生物质","originalKeyword":"生物质"},{"id":"1786e0fb-564e-4764-8afe-1f90816ffb90","keyword":"部分氧化气化","originalKeyword":"部分氧化气化"},{"id":"ff0358f6-0bf7-4561-a18e-9244d12add31","keyword":"实验装置","originalKeyword":"实验装置"},{"id":"9eba323e-892c-4d59-bebe-ebd0013c5de2","keyword":"传热特性","originalKeyword":"传热特性"}],"language":"zh","publisherId":"gcrwlxb201208044","title":"新型气化装置中生物质传热特性研究","volume":"33","year":"2012"},{"abstractinfo":"以稻壳、木屑、生物质炭和生物质成型燃料4种生物质为对象,利用携带流反应装置,研究了生物质种类、反应温度(T2)、化学计量比(SR2)、氨氮摩尔比(nsR)和添加剂等对生物质再燃/高级再燃脱硝效果的影响.结果表明:在T2=850~1150℃范围内,随着反应温度的升高,生物质再燃脱硝效率不断上升,而高级再燃脱硝效率则呈现先上升后降低的趋势.在nSR=0~1.5条件下,生物质高级再燃脱硝效率随着nSR增加逐渐增加,当nSR>1.5时脱硝效率逐渐趋于稳定.在SR2=0~1.0条件下,生物质再燃脱硝效率随着SR2的增加逐渐降低,面生物质高级再燃脱硝效率呈现先增加后稍有降低的趋势.添加剂对再燃/高级脱硝均有一定的促进作用,其中Fe2 O3促进作用最为显著.","authors":[{"authorName":"郝江涛","id":"69d08658-f622-4058-a938-6a6d89fc7901","originalAuthorName":"郝江涛"},{"authorName":"卢平","id":"339d4583-4500-4e59-b992-ccc3d5f4a800","originalAuthorName":"卢平"},{"authorName":"于伟","id":"0e3410df-266b-422c-9d88-35c66517f1d2","originalAuthorName":"于伟"},{"authorName":"张宇飞","id":"93ed79f6-5bc9-49ee-ba67-1e3d97f5fea9","originalAuthorName":"张宇飞"},{"authorName":"祝秀明","id":"d13464bd-c2ad-4cdc-8d96-0cefe1e76dce","originalAuthorName":"祝秀明"}],"doi":"","fpage":"593","id":"d0f6e681-4f9e-4dea-a272-0ef75fb0fcb8","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"53a847f8-6126-4a71-a98f-bbed65f859e0","keyword":"生物质","originalKeyword":"生物质"},{"id":"4ad35009-9a23-454c-9bb7-49d074bd9df9","keyword":"再燃","originalKeyword":"再燃"},{"id":"16e224b1-e567-40a0-b6e5-fd2aaff2f1b6","keyword":"高级再燃","originalKeyword":"高级再燃"},{"id":"657d8320-4e93-4ef9-a714-e04515b48598","keyword":"脱硝","originalKeyword":"脱硝"},{"id":"263a0cb7-abb3-455b-afba-4c1a5d36826c","keyword":"添加剂","originalKeyword":"添加剂"}],"language":"zh","publisherId":"gcrwlxb201403040","title":"生物质再燃/高级再燃脱硝的实验研究","volume":"35","year":"2014"},{"abstractinfo":"生物质泡沫材料与传统石油泡沫材料相比具有明显的经济和环保优势,已经越来越受到世界各国的关注.本文阐述了国内外研究人员在生物质泡沫材料研究领域的最新进展,重点介绍了以植物油脂、木质纤维索、松香、淀粉为生物质原料的泡沫材料的制备方法,物理、热力学及力学性能,并对其进行了比较.最后,对国内外生物质泡沫材料的应用前景做了展望.","authors":[{"authorName":"张伟","id":"7bf7800a-2b04-4bcf-87f8-c7a79f525ff0","originalAuthorName":"张伟"},{"authorName":"储富祥","id":"c8356844-5408-4ef6-be3a-077d8a110352","originalAuthorName":"储富祥"},{"authorName":"王春鹏","id":"7c5e7a14-a5a7-40e2-bf62-ba78c4c94d1b","originalAuthorName":"王春鹏"}],"doi":"","fpage":"157","id":"1addb2b3-46a0-461d-ba1e-4fceb4d4641d","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"0c85b5e4-a235-4fe6-8e34-e969974eb56f","keyword":"生物质","originalKeyword":"生物质"},{"id":"9a9b0897-0013-4215-bfeb-a232cfcaa8f9","keyword":"泡沫材料","originalKeyword":"泡沫材料"},{"id":"7acb07cc-e8a9-4fb6-b876-f48b1766d42b","keyword":"聚氮酯","originalKeyword":"聚氮酯"},{"id":"9ac6dc49-ff91-4a04-b91b-00e9b62b46c9","keyword":"酚醛","originalKeyword":"酚醛"},{"id":"58791514-e5c3-45ee-ad14-78aa43f4597f","keyword":"淀粉","originalKeyword":"淀粉"}],"language":"zh","publisherId":"gfzclkxygc201008043","title":"生物质泡沫材料的研究进展","volume":"26","year":"2010"},{"abstractinfo":"以轻质芳烃苯、甲苯、二甲苯和萘(BTXN)为目的产物,采用双颗粒流化床反应器对3种木材生物质进行了热解实验. 结果表明,木材生物质的初次热解终止温度低,有利于低温催化转化. 生物质中92%的挥发分在673 K时已释放完全,且生物质在初期热解得到的焦油经过二次分解反应可以转化为其它产物,通过有效控制生物质热解二次气相反应,能够改变其产物的分布,从而获得不同的目的产物. 生物质的催化加氢热解实验结果表明,催化剂种类和热解温度对加氢热解产物收率及其分布均有影响, BTXN是热解或加氢热解过程中二次气相反应的中间产物. 为了获得高产率的BTXN, 必须选择加氢活性适度的催化剂. 当CoMo-S/Al2O3催化剂作为流化介质进行加氢热解时,在863 K时, BTXN的收率可达6 3%(干燥无灰质量基准), 而NiMo/Al2O3催化剂表现出了很强的加氢活性, CH4的收率高达99 5%.","authors":[{"authorName":"王昶","id":"bb33c32c-df8b-4df3-ba48-9fdcb617b1cb","originalAuthorName":"王昶"},{"authorName":"郝庆兰","id":"1b631fb9-3e41-49ed-bb98-6cd315cb1c38","originalAuthorName":"郝庆兰"},{"authorName":"卢定强","id":"8cf3ae1f-4812-49eb-9f9e-65eba5aa6e3e","originalAuthorName":"卢定强"},{"authorName":"贾青竹","id":"5379bd52-370c-4b13-8e38-b316621ba682","originalAuthorName":"贾青竹"},{"authorName":"李桂菊","id":"7f3d8a92-9469-40b2-9bd2-c00acae897b6","originalAuthorName":"李桂菊"},{"authorName":"许博","id":"bf6db31f-1f5b-471e-8872-f61fe5f18029","originalAuthorName":"许博"}],"doi":"","fpage":"907","id":"56a0cf85-5345-4225-b120-7cc5f9d5eada","issue":"9","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"836191ed-bc59-47d3-b9fb-9177b2be4b69","keyword":"生物质","originalKeyword":"生物质"},{"id":"e265384c-62bb-4ae1-abb3-ecf622d1648b","keyword":"催化热解","originalKeyword":"催化热解"},{"id":"f0cd60fc-0c1c-478f-aba1-0539ebe485ba","keyword":"轻质芳烃","originalKeyword":"轻质芳烃"},{"id":"c7e59818-4989-4dc4-be2b-c6ffc913e915","keyword":"流化床","originalKeyword":"流化床"}],"language":"zh","publisherId":"cuihuaxb200809015","title":"生物质催化热解制取轻质芳烃","volume":"29","year":"2008"},{"abstractinfo":"根据生物质颗粒内部燃烧过程和生物质粉自然向下阴燃过程的共性,采用阴燃实验的方法研究了生物质内部燃烧特性.考查了物料种类、含水率、孔隙尺寸对生物质内部燃烧温度,燃烧中干燥前沿、炭氧化前沿的移动速度,裂纹、气体成分等的影响.实验结果为生物质燃烧和阴燃过程模拟以及深入理论分析提供了依据.","authors":[{"authorName":"何芳","id":"26307fc4-0bb9-4fd8-a8fc-975224ea2f43","originalAuthorName":"何芳"},{"authorName":"易维明","id":"a36199ba-a316-44f7-a6eb-bd7817271ac5","originalAuthorName":"易维明"},{"authorName":"李志合","id":"017a4233-98d2-4e91-b533-47989a27d86d","originalAuthorName":"李志合"},{"authorName":"闸建文","id":"fd4ad510-a4c1-46f2-b79a-5c1465bfb1d6","originalAuthorName":"闸建文"},{"authorName":"王丽红","id":"cc1e3b84-12e2-4b46-9503-770d4a7b94eb","originalAuthorName":"王丽红"},{"authorName":"罗冰","id":"e8e3b5d9-65c1-4dea-9aee-9ea943fbe2c6","originalAuthorName":"罗冰"},{"authorName":"付鹏","id":"ec7d6dc3-207e-461f-b473-6bdcbe3bdae9","originalAuthorName":"付鹏"}],"doi":"","fpage":"792","id":"dc35259f-39d2-488e-bb4c-5bfe17b97d80","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8c2c4212-840c-4b26-b4bb-61dae8728298","keyword":"生物质","originalKeyword":"生物质"},{"id":"9a595982-9bb6-4f98-bc75-39bfefcd0bfd","keyword":"燃烧","originalKeyword":"燃烧"},{"id":"92097dba-a1fa-45e2-b00e-64d233517deb","keyword":"阴燃实验","originalKeyword":"阴燃实验"}],"language":"zh","publisherId":"gcrwlxb201404039","title":"生物质内部燃烧特性的阴燃实验研究","volume":"35","year":"2014"},{"abstractinfo":"对纯白松及CaO伴随白松热天平热解固体产物样品进行了XRD及FTIR分析。实验发现:1)CaO伴随样品的350℃终温产物中存在有机钙盐,此即被CaO直接固定的“类CO2活性中间体”;2)400℃终温产物中有机钙盐已显著分解,并生成易于再生的CaCO3,进一步证实了“CaO化学链置换再线脱氧,,的可行性。实验结果还表明:300℃以前主要是半纤维素的热解,400℃时纤维素结构基本上已被破坏,同时生物质的芳香化也大量发生。","authors":[{"authorName":"林郁郁","id":"b4f41294-823b-4152-8452-0ef186d61d6d","originalAuthorName":"林郁郁"},{"authorName":"张楚","id":"434a75a0-1148-4d77-8403-76cdf8fe88ab","originalAuthorName":"张楚"},{"authorName":"张健","id":"a86e8190-0353-4edc-816e-4d700d0e660b","originalAuthorName":"张健"},{"authorName":"章明川","id":"43dd95df-5dcd-4403-951f-66c5ae226129","originalAuthorName":"章明川"}],"doi":"","fpage":"2133","id":"98078259-4fd6-48b0-af19-b64e3f748682","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e09f4130-e511-4a9e-8754-2d08da73b7b3","keyword":"生物质","originalKeyword":"生物质"},{"id":"745181e2-3379-425b-a715-e4b0fea60231","keyword":"热裂解","originalKeyword":"热裂解"},{"id":"2673a105-8668-4e59-a025-9271faefc4c7","keyword":"CaO","originalKeyword":"CaO"},{"id":"4336a1d9-2fd0-485d-a556-6d0f334f98d0","keyword":"再线脱氧","originalKeyword":"再线脱氧"},{"id":"b688a7ec-4e38-4a75-b5ff-40cba3bfc4b0","keyword":"富氧中间体","originalKeyword":"富氧中间体"}],"language":"zh","publisherId":"gcrwlxb201112040","title":"CaO伴随生物质热裂解固体产物分析","volume":"32","year":"2011"}],"totalpage":1004,"totalrecord":10039}