{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"目的:研究钴基合金-不锈钢梯度强化材料抵抗低应力多碰塑性变形的能力,以改善单一涂层应力集中问题。方法制备指数梯度和线性梯度涂层试样,与304不锈钢基体试样一起进行低应力多碰实验,比较分析3种材料的塑性变形量、硬度变化量与金相组织变化。结果线性梯度涂层试样的累积塑性变形量约为304不锈钢的1/2,指数梯度涂层试样的累积塑性变形量约为304不锈钢的1/3;两种涂层试样均存在循环硬化及软化现象,硬度值由表及里逐渐减小,多碰后塑性变形符合“趋表效应”。结论两种梯度涂层强化材料的抗低应力多碰塑变能力均明显优于未强化材料,且指数梯度强化材料性能优于线性梯度强化材料。","authors":[{"authorName":"赵晔婷","id":"2a8cda91-9826-49d4-8629-0c0782de13fe","originalAuthorName":"赵晔婷"},{"authorName":"石世宏","id":"7ff3d2d8-41a3-4d64-b846-5c3290d100f8","originalAuthorName":"石世宏"},{"authorName":"傅戈雁","id":"ecd42665-76ab-44fb-ae3f-4212036618ac","originalAuthorName":"傅戈雁"}],"doi":"10.16490/j.cnki.issn.1001-3660.2015.02.013","fpage":"68","id":"5bcf3b22-ab90-44e3-859c-45946045f078","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"b6fe48e4-6e60-49c0-afb2-1de3161cf674","keyword":"低应力多碰","originalKeyword":"低应力多碰"},{"id":"6fcd05ea-5f10-4a0f-81f5-e0c6785571f0","keyword":"塑变","originalKeyword":"塑变"},{"id":"b181f815-6924-411e-9b1d-d09a2eae71a0","keyword":"梯度强化","originalKeyword":"梯度强化"},{"id":"b19c6407-2738-43bd-96df-3b0ddd1fd6b7","keyword":"趋表效应","originalKeyword":"趋表效应"}],"language":"zh","publisherId":"bmjs201502013","title":"钴基合金-不锈钢梯度强化材料低应力多碰塑变分析","volume":"","year":"2015"},{"abstractinfo":"目的 研究在低应力多碰条件下,在零件表面激光熔覆制备指数分布梯度涂层的效应.方法 采用网格坐标划分法,在低应力条件下通过对Ni基指数分布梯度熔覆层的0Cr18Ni9试件进行多碰试验,获取变形数据,计算获得变形率,绘制规律曲线.借助工具显微镜,获得碰撞前后组织金相图.结果 采用的碰撞应力仅有115 MPa,远低于涂层材料与基体的静压缩屈服强度,但指数分布的梯度涂层发生了可测的塑性变形,第一网格层变形率最为明显,达到了18.97%,第二网格层变形率为15.03%,靠近基体的最后一个网格层的变形率为0.29%,可以表明指数分布梯度涂层在低应力多碰后的形变具有\"趋表效应\".基体的形变情况与梯度涂层的形变基本一致,从距表面6 mm处开始,涂层与基体结合处由于有瞬间激光高温熔覆,出现了应变的突变现象,宏观塑性变形增大,变形率突增到3.92%,但基体的形变总的来说也符合\"趋表效应\".同时借助金相图看到的晶体滑移现象也证实了这一点.结论 在低应力多碰作用后,试件表层的累积变形量最大,随着涂层深度的增加梯度减小,表明具有\"趋表效应\",同时抗多冲形变的能力显著增强.","authors":[{"authorName":"孔茗","id":"ec7ee468-9711-4ffb-9ffa-895fed7a1e3e","originalAuthorName":"孔茗"},{"authorName":"沈玲琳","id":"51ec2fbe-cdb8-4fcf-b5ca-49dbc59a9d9e","originalAuthorName":"沈玲琳"},{"authorName":"石世宏","id":"35b56caa-343e-4126-8f88-66999c90df7d","originalAuthorName":"石世宏"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.06.039","fpage":"244","id":"fbf877f2-2a87-4f2a-9d0f-1d11175326e7","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"c38cb810-8180-4d01-bab9-cba91d5e3d3e","keyword":"指数梯度涂层","originalKeyword":"指数梯度涂层"},{"id":"ea43bda0-89de-4cd0-a798-69f64acac3fb","keyword":"多次碰撞","originalKeyword":"多次碰撞"},{"id":"2982a8ed-0515-4229-8e47-c8bc8ee376e5","keyword":"网格坐标法","originalKeyword":"网格坐标法"},{"id":"13c48739-0e18-4121-a3ee-76bae5a2297a","keyword":"变形率","originalKeyword":"变形率"},{"id":"540eff58-af4a-43e5-9e9c-86a625fe7d9a","keyword":"趋表","originalKeyword":"趋表"},{"id":"53469627-8974-4171-8bd6-ca2febd76709","keyword":"组织金相图","originalKeyword":"组织金相图"}],"language":"zh","publisherId":"bmjs201706039","title":"Ni基指数分布梯度熔覆层低应力多碰趋表效应","volume":"46","year":"2017"},{"abstractinfo":"通过对氨基磺酸盐镀镍工艺获得的低应力镀镍层进行结合力、氢脆、耐蚀性等测定,确定了低应力氨基磺酸盐镀镍的预处理工艺、镀镍配方及电镀工艺参数,同时研究了低应力镀镍液成分及工艺参数对镀层应力的影响.试验结果表明,这种低应力镀镍工艺获得的镀层具有应力低、结合力好和低氢脆性等性能.","authors":[{"authorName":"王辉","id":"094aede4-eaa6-4c0f-8a2e-cc1c36b6c29e","originalAuthorName":"王辉"}],"doi":"","fpage":"726","id":"4a7d6724-cc4a-45f1-bfc0-b082f17b3334","issue":"9","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"6235dba0-ec80-4418-9c6f-860ad549d875","keyword":"低应力","originalKeyword":"低应力"},{"id":"89a8a8b3-6273-4c3f-ab19-35d12ae64a96","keyword":"氨基磺酸盐","originalKeyword":"氨基磺酸盐"},{"id":"f592a8a2-280f-4346-993d-a44eea7ba3ae","keyword":"镀镍","originalKeyword":"镀镍"}],"language":"zh","publisherId":"fsyfh201009019","title":"氨基磺酸盐低应力镀镍工艺","volume":"31","year":"2010"},{"abstractinfo":"多尺度分析的方法突破了传统均匀化理论的限制,在计算涂层有效性质的基础上,能够进一步分析其微细结构的应力.通过理论分析得到微细结构的控制方程,结合有限元技术,能够精确高效地计算热喷涂层局部微细结构的应力分布.应用均匀化理论结合有限元分析估计了Fe-Cr-Al合金热喷涂层的有效性质(弹性模量、导热系数和热膨胀系数),同时研究了微细裂纹对Fe-Cr-Al合金涂层应力的影响,得到了裂纹处的拉应力和热应力分布情况.","authors":[{"authorName":"曹磊","id":"cd6fb8d9-c39c-408d-b586-4ddba5bf507b","originalAuthorName":"曹磊"},{"authorName":"徐广为","id":"e7deb447-ce32-46c7-921a-9e42363306fb","originalAuthorName":"徐广为"},{"authorName":"沈连婠","id":"45cb5f5c-c4cd-4aa6-9fd6-f6a38c227077","originalAuthorName":"沈连婠"}],"doi":"10.3969/j.issn.1005-0299.2006.01.007","fpage":"22","id":"02ac67af-736e-4f5a-9284-aa3babf9f567","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"624ed7db-3264-4ca4-b1a3-f20bf520b277","keyword":"多尺度方法","originalKeyword":"多尺度方法"},{"id":"5324022b-2800-46dc-ba7a-5a3494913c2b","keyword":"均匀化理论","originalKeyword":"均匀化理论"},{"id":"7be6a021-de67-4339-b8b0-4a1427a204f0","keyword":"热喷涂层","originalKeyword":"热喷涂层"},{"id":"3183ab31-1a73-4d56-b544-f4b85253e23a","keyword":"Fe-Cr-Al合金","originalKeyword":"Fe-Cr-Al合金"},{"id":"63404bf1-aa18-48c9-9fc5-178dc252174e","keyword":"有限元法","originalKeyword":"有限元法"}],"language":"zh","publisherId":"clkxygy200601007","title":"用多尺度方法分析热喷涂层应力","volume":"14","year":"2006"},{"abstractinfo":"在680和850℃下对DD3镍基单晶合金进行多轴非比例加载低周疲劳试验, 结果表明等效应变范围Δεe、试验温度、等效应力范围Δσe对单晶合金的低周疲劳寿命有显著影响。基于能量耗散理论, 引入参量k表征多轴非比例加载对疲劳寿命的影响, 构造循环塑性应变能作为损伤参量, 建立镍基单晶合金低周疲劳寿命预测模型。参量k与循环寿命之间呈幂函数关系。根据镍基单晶合金的微观尺度结构特征, 建立γ/γ'双相单胞有限元模型, 进行多轴非比例循环加载应力应变数值模拟。根据宏观有限元模型和γ/γ'双相单胞微观有限元模型的计算结果, 以及镍基单晶合金680和850℃低周疲劳试验数据, 对疲劳寿命模型进行多元线性回归分析, 结果表明微观单胞有限元模型的分析精度比宏观有限元模型显著提高,两种温度下的试验数据分别落在1.6倍和2.0倍偏差分布带内。","authors":[{"authorName":"丁智平王腾飞李明陈吉平","id":"adb70ee1-baa3-4b61-aab9-148aeda8f60a","originalAuthorName":"丁智平王腾飞李明陈吉平"}],"categoryName":"|","doi":"","fpage":"455","id":"f84ad0ca-cdba-46c9-9367-eececfea3583","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"1edba37b-8288-4daf-8afd-c4df38dcd77c","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"2423ceab-aae6-4c52-9a89-8ab658a86ed8","keyword":"low cycle fatigue","originalKeyword":"low cycle fatigue"},{"id":"6d40d74d-c312-4aec-93cd-85a4126ea76b","keyword":"single crystal superalloy","originalKeyword":"single crystal superalloy"},{"id":"7e963a82-e5cb-48b7-b376-5a14eaf1ff41","keyword":"multiaxial non-proportional loading","originalKeyword":"multiaxial non-proportional loading"},{"id":"9da1067a-6ec2-452e-a6e8-581d3c8ff2b7","keyword":"unit cell model","originalKeyword":"unit cell model"},{"id":"3ea40909-3e13-4425-8c82-e40d76707aa9","keyword":"life prediction","originalKeyword":"life prediction"}],"language":"zh","publisherId":"1005-3093_2011_5_5","title":"镍基单晶合金多轴非比例加载低周疲劳单胞模型","volume":"25","year":"2011"},{"abstractinfo":"在680和850℃下对DD3镍基单晶合金进行多轴非比例加载低周疲劳试验,结果表明等效应变范围△ε_e、试验温度、等效应力范围△σ_e对单晶合金的低周疲劳寿命有显著影响。基于能量耗散理论,引入参量k表征多轴非比例加载对疲劳寿命的影响,构造循环塑性应变能作为损伤参量,建立镍基单晶合金低周疲劳寿命预测模型。参量k与循环寿命之间呈幂函数关系。根据镍基单晶合金的微观尺度结构特征.建立γ/γ′双相单胞有限元模型,进行多轴非比例循环加载应力应变数值模拟。根据宏观有限元模型和γ/γ′双相单胞微观有限元模型的计算结果,以及镍基单晶合金680和850℃低周疲劳试验数据,对疲劳寿命模型进行多元线性回归分析,结果表明微观单胞有限元模型的分析精度比宏观有限元模型显著提高,两种温度下的试验数据分别落在1.6倍和2.0倍偏差分布带内。","authors":[{"authorName":"丁智平","id":"ee2c78b6-6e1d-46af-b090-acd678e8138e","originalAuthorName":"丁智平"},{"authorName":"王腾飞","id":"2caf9f36-84ff-4075-a591-edca1b426f65","originalAuthorName":"王腾飞"},{"authorName":"李明","id":"c1a88d9f-b515-4497-9d8f-4fe374aa841e","originalAuthorName":"李明"},{"authorName":"陈吉平","id":"bf56f982-392c-44d8-bbbb-2c4e706ba876","originalAuthorName":"陈吉平"}],"doi":"","fpage":"455","id":"d574a52e-5f03-46c4-aab8-2f982ad36b50","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"4764ee1c-9e36-49f5-b373-2d301fb41a24","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"3e8433d8-1a4a-4bb5-9a5b-e06603bc36c7","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"9fdbe093-eff9-4e3a-8925-4265307572d6","keyword":"单晶合金","originalKeyword":"单晶合金"},{"id":"b0a4752a-ac11-4a37-8a2e-8f7fa47effbd","keyword":"多轴非比例加载","originalKeyword":"多轴非比例加载"},{"id":"c60b09ca-c3ba-4874-906a-8cbb03320726","keyword":"单胞模型","originalKeyword":"单胞模型"},{"id":"27342ec4-e090-450d-ba4d-aa49f0631636","keyword":"寿命预测","originalKeyword":"寿命预测"}],"language":"zh","publisherId":"clyjxb201105002","title":"镍基单晶合金多轴非比例加载低周疲劳单胞模型","volume":"25","year":"2011"},{"abstractinfo":"对ABS塑料多层涂装工艺进行了探讨,指出采用\"湿碰湿\"工艺可提高生产效率和产品合格率,涂层各项性能指标合格.","authors":[{"authorName":"严易舒","id":"85b0702f-0a30-419f-af21-acd13f5a17a3","originalAuthorName":"严易舒"},{"authorName":"谭青锋","id":"bbf5626f-50d3-4d80-8758-91eab6e21fdc","originalAuthorName":"谭青锋"},{"authorName":"汪洋","id":"75e49ce3-8917-415c-9a51-675322c40955","originalAuthorName":"汪洋"}],"doi":"10.3969/j.issn.1001-1560.2000.05.021","fpage":"43","id":"09d80ba2-7171-4659-8a9c-8478d9e34b5f","issue":"5","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"11a7bd2a-b0cd-4ce4-86d8-9cd43b088944","keyword":"涂装","originalKeyword":"涂装"},{"id":"dcefce32-a8f9-4709-b084-d8fde60e8a60","keyword":"ABS塑料","originalKeyword":"ABS塑料"},{"id":"fb8ebd44-9722-467f-9f1c-23381f059b1a","keyword":"\"湿碰湿\"工艺","originalKeyword":"\"湿碰湿\"工艺"}],"language":"zh","publisherId":"clbh200005021","title":"ABS塑料件多层\"湿碰湿\"涂装新工艺","volume":"33","year":"2000"},{"abstractinfo":"利用有限元方法建立了刚性平面与多粗糙峰涂层的弹性接触模型,研究了刚性平面分别与二维涂层粗糙峰、三维涂层粗糙峰的接触状态,揭示了涂层/基体弹性模量比、涂层厚度、粗糙峰问距、刚性平面压下深度对涂层粗糙峰表面、涂层/基体界面等效应力分布及涂层基体变形的影响规律.计算结果表明:压下深度对涂层粗糙峰表面最大等效米塞斯应力的影响最大,涂层厚度和涂层/基体弹性模量比的影响次之,粗糙峰间距的影响最小;增大涂层厚度,减小压下深度、粗糙峰间距和低弹性模量比,会使得最大等效应力值显著降低.","authors":[{"authorName":"徐中","id":"d557aae9-57f7-4d29-a478-7f2164576c8f","originalAuthorName":"徐中"},{"authorName":"王岳峰","id":"fc46ccd7-cd06-4630-a533-6cc766bed13f","originalAuthorName":"王岳峰"},{"authorName":"仲强","id":"178cfc89-cc55-4809-8ec5-1832c183c438","originalAuthorName":"仲强"},{"authorName":"王磊","id":"d3ab817a-7d42-405f-86e6-378a833c9e7f","originalAuthorName":"王磊"},{"authorName":"徐文骥","id":"33ea913b-a855-436a-9dcb-6f798e3483a5","originalAuthorName":"徐文骥"}],"doi":"10.3969/j.issn.1001-3660.2010.05.011","fpage":"35","id":"4f3ebef6-2b58-4618-b2cc-36670417f102","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"0e04b7e6-6a0e-45ec-a42d-df3003e299c2","keyword":"粗糙峰","originalKeyword":"粗糙峰"},{"id":"00cf652a-b9ae-4fef-a2e3-0829a12e7c24","keyword":"等效米塞斯应力","originalKeyword":"等效米塞斯应力"},{"id":"423ea8f1-d086-473a-bb21-613db38719be","keyword":"有限元法","originalKeyword":"有限元法"},{"id":"2fac54b9-1ef5-4904-956a-a4ba2f1def8a","keyword":"涂层","originalKeyword":"涂层"}],"language":"zh","publisherId":"bmjs201005011","title":"三维多粗糙峰涂层等效应力分析与表征","volume":"39","year":"2010"},{"abstractinfo":" 主要综述近年来国内外有关在多轴非比例加载条件材料的低周疲劳的研究现状与进展,重点评述了各种多轴疲劳寿命估算方法及微观机理的研究,并提出了今后在非比例载荷下多轴低周疲劳研究设想.","authors":[{"authorName":"丰崇友","id":"f6a581b0-7de7-4222-937d-66bd439d209a","originalAuthorName":"丰崇友"}],"categoryName":"|","doi":"","fpage":"124","id":"fc9d5b20-d44a-48db-a92d-dc4d233d0070","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"96be619c-95aa-4e4b-a6df-dbd3ccdb3c1f","keyword":"多轴低周疲劳","originalKeyword":"多轴低周疲劳"},{"id":"bd761ca3-ad7b-4ee4-a78a-893cacff9e18","keyword":"fatigue criteria","originalKeyword":"fatigue criteria"},{"id":"8e7bbdcc-3eec-4564-aa72-73e703716f11","keyword":"nonproportional loadings","originalKeyword":"nonproportional loadings"},{"id":"a09f19cf-89b6-4b2a-8570-d3ab03768581","keyword":"additional hardening","originalKeyword":"additional hardening"},{"id":"0c3e03cb-001f-4de0-af0c-5feef138dad5","keyword":"dislocation","originalKeyword":"dislocation"}],"language":"zh","publisherId":"1002-6495_2010_2_2","title":"多轴非比例加载低周疲劳的研究综述","volume":"22","year":"2010"},{"abstractinfo":"主要综述近年来国内外有关在多轴非比例加载条件材料的低周疲劳的研究现状与进展,重点评述了各种多轴疲劳寿命估算方法及微观机理的研究,并提出了今后在非比例载荷下多轴低周疲劳研究设想.","authors":[{"authorName":"丰崇友","id":"3b6d1e44-e99d-4ffa-977c-d24487676fbc","originalAuthorName":"丰崇友"}],"doi":"","fpage":"124","id":"11b532a7-a67d-412e-b52e-3ff512590bfc","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"06941eed-2f5e-4c5e-91fe-7876db98e47f","keyword":"多轴低周疲劳","originalKeyword":"多轴低周疲劳"},{"id":"10ce2111-0ec0-48ca-88bc-7e6b14d9820a","keyword":"疲劳破坏准则","originalKeyword":"疲劳破坏准则"},{"id":"842f7b4a-f16b-4dda-b056-7471faf14b88","keyword":"非比例载荷","originalKeyword":"非比例载荷"},{"id":"97480ea4-f7a9-451e-8f2f-db3ed1f418f1","keyword":"附加强化","originalKeyword":"附加强化"},{"id":"f42a8ca7-965a-4389-8d64-19243f1b280a","keyword":"位错","originalKeyword":"位错"}],"language":"zh","publisherId":"fskxyfhjs201002012","title":"多轴非比例加载低周疲劳的研究综述","volume":"21","year":"2010"}],"totalpage":2943,"totalrecord":29423}