{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了新型引发剂、抗氧性单体和不同包层工艺对聚甲基丙烯酸甲酯(PMMA)阶跃型塑料光纤损耗的影响.发现利用含氟自由基引发聚合高纯甲基丙烯酸甲酯(MMA)、加入抗氧性单体、采用共挤氟树脂包层工艺能很好地降低塑料光纤损耗.本实验室采用以上材料和工艺制备出了最低损耗为192dB/km(650nm)的塑料光纤,与国外同类产品损耗水平(200dB/km左右)相当.\n","authors":[{"authorName":"温序铭","id":"93ff773d-0aa8-4010-8499-0da2a3ad7447","originalAuthorName":"温序铭"},{"authorName":"储九荣","id":"9461f466-7666-4454-a78e-d1736d48f0fc","originalAuthorName":"储九荣"},{"authorName":"孙会刚","id":"38b33c9d-ffaf-4100-a923-5027ac316d4c","originalAuthorName":"孙会刚"},{"authorName":"张海龙","id":"f7b81d39-cf91-43d1-add6-a15ae5c50e76","originalAuthorName":"张海龙"},{"authorName":"徐传骧","id":"7370934a-ce4f-481c-850f-ca2cd1950017","originalAuthorName":"徐传骧"},{"authorName":"王寿泰","id":"ad172742-c7a4-4961-be81-b82a25bed240","originalAuthorName":"王寿泰"},{"authorName":"赵祥臻","id":"c00d3e2a-abbd-4c5b-a783-ea54ee9aee9e","originalAuthorName":"赵祥臻"}],"doi":"","fpage":"329","id":"7a7e72f9-9157-452a-91af-94ea9a4891aa","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3ca6248e-573a-4a05-8ba3-c11b2a541604","keyword":"PMMA塑料光纤","originalKeyword":"PMMA塑料光纤"},{"id":"03e2b7cc-fa16-498e-b597-5b07c17bdfa4","keyword":"含氟自由基","originalKeyword":"含氟自由基"},{"id":"e0c7c649-b13f-4b3d-a6d9-452e93f95ba9","keyword":"抗氧性单体","originalKeyword":"抗氧性单体"},{"id":"001eaf85-9b31-496e-a3a5-42a6d7768eca","keyword":"损耗","originalKeyword":"损耗"}],"language":"zh","publisherId":"gncl200203038","title":"降低PMMA塑料光纤损耗的初步研究","volume":"33","year":"2002"},{"abstractinfo":"通过三层包覆法制备了铁粉芯,用XRD和BH分析仪对其结构和磁性能进行了分析。研究发现,在1kHz频率下初始磁导率随温度变化,样品具有良好的温度稳定性;在f=1kHz、Bm=1T的损耗为115.6W/cm3,样品具有低损耗特征。","authors":[{"authorName":"姜坤良","id":"550258c8-12b6-4735-9154-f6759330e854","originalAuthorName":"姜坤良"},{"authorName":"刘先松","id":"ab89b17b-69ea-4136-a6a0-3c6824463f9e","originalAuthorName":"刘先松"},{"authorName":"王超","id":"888df242-7c5c-4d79-a5e3-ece79122e6c0","originalAuthorName":"王超"},{"authorName":"徐娟娟","id":"719bb111-6a6b-4814-8434-bfdeb46b87cd","originalAuthorName":"徐娟娟"},{"authorName":"金大利","id":"a462ed85-902a-4be7-8a9b-45e692c79db4","originalAuthorName":"金大利"},{"authorName":"高尚","id":"7afdbeca-f0ed-44cb-bd0c-bae11bc7b729","originalAuthorName":"高尚"}],"doi":"","fpage":"2153","id":"95b0b629-4651-4bf1-921c-edd4f84b4983","issue":"16","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"df930a00-68d2-471b-b164-d3ab311eb9c5","keyword":"制备","originalKeyword":"制备"},{"id":"92d29161-a020-4502-aa82-5cad47fa715a","keyword":"铁粉芯","originalKeyword":"铁粉芯"},{"id":"5ad07bca-b31c-46cf-94e1-42308e7e43ee","keyword":"磁性","originalKeyword":"磁性"},{"id":"1ad74c2b-abb3-45dc-ad3a-8af989cbae46","keyword":"损耗","originalKeyword":"损耗"}],"language":"zh","publisherId":"gncl201216009","title":"低损耗铁粉芯的制备与磁性研究","volume":"43","year":"2012"},{"abstractinfo":"基于硅基波导、十字状波导交叉和基于波导微环的光交换器件的损耗特性,对Torus结构的芯片上光互连网络建立了损耗模型,利用该模型来对芯片上光互连网络进行光器件级、光路由器级和网络级的损耗特性分析,同时建立芯片上光互连网络损耗自动分析系统.依据该系统可以得到不同网络规模下的最大损耗,并分别分析了基于Crossbar、Cygnus和Crux路由器的torus结构网络的损耗特性.传输损耗随着网络规模的扩展而增加,最小的传输损耗出现在M=N时.同时,可以得到采用Crux路由器构成的芯片上光互连网络的传输损耗最小,小于Cygnus构成的芯片上光互连网络约5 dB.","authors":[{"authorName":"赵巍仑","id":"d852c39c-2cee-44e1-bad2-68c9d59decfc","originalAuthorName":"赵巍仑"},{"authorName":"何娟","id":"56bf8cbf-7f5c-43a1-8977-51351dde9372","originalAuthorName":"何娟"},{"authorName":"牛伟","id":"39fba07f-1189-436b-8f3f-8a8b0273df33","originalAuthorName":"牛伟"},{"authorName":"杨逐","id":"279c9beb-6780-46a6-9d1a-d37b542c3897","originalAuthorName":"杨逐"},{"authorName":"谢军","id":"b5cd511c-7cf6-4668-ac0a-4609f4c420e3","originalAuthorName":"谢军"},{"authorName":"张琪琦","id":"21e764f1-5400-4f1b-8002-c5f0eafcc3e4","originalAuthorName":"张琪琦"},{"authorName":"龚元洁","id":"7885d227-0da4-41a9-aa62-e602f1cfb35c","originalAuthorName":"龚元洁"},{"authorName":"王勇","id":"1a89a9b9-90d6-4b68-a8ff-04f59314a4a2","originalAuthorName":"王勇"},{"authorName":"解宜原","id":"7a9ccee1-4ea5-459c-897d-ace4ce930348","originalAuthorName":"解宜原"}],"doi":"10.3969/j.issn.1007-5461.2014.02.019","fpage":"245","id":"451aec57-b116-4647-9be6-81d2e0ac1b98","issue":"2","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"6d951928-e902-4a0a-8494-3271877ca3f4","keyword":"光通信","originalKeyword":"光通信"},{"id":"de95b809-63de-498f-8a10-dbfe7c469fb1","keyword":"光交换器","originalKeyword":"光交换器"},{"id":"3c2fe538-b5e2-4ae8-9887-ff3098a9668a","keyword":"芯片上光互连网络","originalKeyword":"芯片上光互连网络"},{"id":"316fb99c-4f0d-4475-a65d-9a1ad188778a","keyword":"损耗","originalKeyword":"损耗"},{"id":"f16c24df-555a-4336-b1c8-caa4ddfd029a","keyword":"路由器","originalKeyword":"路由器"},{"id":"77f3a926-f187-4a77-8cdc-2d31d8dccbcb","keyword":"Torus结构网络","originalKeyword":"Torus结构网络"}],"language":"zh","publisherId":"lzdzxb201402019","title":"Torus结构的芯片上光互连网络损耗分析和优化","volume":"31","year":"2014"},{"abstractinfo":"综述了宽温低损耗MnZn功率铁氧体的发展及应用,探讨了配方、添加剂、烧结工艺及热处理对MnZn功率铁氧体损耗与起始磁导率温度特性的影响,分析了宽温低损耗MnZn功率铁氧体目前存在的问题,并对宽温低损耗MnZn功率铁氧体今后的发展进行了展望,提出了宽温低损耗MnZn功率铁氧体将会在继续降低损耗、提高温度稳定性的同时向更高应用频率方向发展.","authors":[{"authorName":"姬海宁","id":"52c4fb67-860d-4323-ae73-b8451822088f","originalAuthorName":"姬海宁"},{"authorName":"兰中文","id":"8b938b30-093f-43b4-a606-fe37a4bb7b13","originalAuthorName":"兰中文"},{"authorName":"余忠","id":"d2a36453-31bc-4671-a030-316466ad1843","originalAuthorName":"余忠"},{"authorName":"李乐中","id":"abb7b67f-9d69-4d87-adb5-06c509c66b9a","originalAuthorName":"李乐中"}],"doi":"","fpage":"5","id":"159786fb-95fb-4399-a393-688ad1783a35","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6875e4d7-b43b-49c0-b34a-98c0437fa0ba","keyword":"MnZn铁氧体","originalKeyword":"MnZn铁氧体"},{"id":"73aebf2f-368a-4929-9487-7e65eb398b42","keyword":"损耗","originalKeyword":"损耗"},{"id":"9c2f5eab-cc43-4909-b260-36c779e14ebd","keyword":"温度特性","originalKeyword":"温度特性"},{"id":"90c96b4b-a373-44ee-808b-40aba6fd983e","keyword":"进展","originalKeyword":"进展"}],"language":"zh","publisherId":"cldb200808002","title":"宽温低损耗MnZn功率铁氧体的发展与研究","volume":"22","year":"2008"},{"abstractinfo":"采用球磨制粉和模压成形方法制备铁硅铝磁粉芯,研究了退火温度、成型压力、磁粉粒度和磁粉热处理对磁粉芯的磁导率和损耗性能的影响。结果表明,提高退火温度和成型压力,磁粉芯的磁导率增大,损耗减小。磁粉粒度越小,磁粉芯的磁导率和磁芯损耗越低。磁粉在560℃热处理1小时后,磁粉芯的磁导率和损耗均降低。","authors":[{"authorName":"金丹","id":"ee7b1dee-9e80-48a1-8832-355fb7343969","originalAuthorName":"金丹"},{"authorName":"孙可为","id":"d9903653-baef-4a96-b0cd-f681361fe6ca","originalAuthorName":"孙可为"}],"doi":"","fpage":"525","id":"34ad64c7-0ef8-4cc0-8d23-2332b1919cb4","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"6d518430-9f78-49c7-9566-e3e56f4e089a","keyword":"铁硅铝磁粉芯","originalKeyword":"铁硅铝磁粉芯"},{"id":"cdb60df3-900b-4f26-9852-e2a6a6894a83","keyword":"磁导率","originalKeyword":"磁导率"},{"id":"99d9280f-73e7-46ba-a871-76be684948c4","keyword":"损耗","originalKeyword":"损耗"},{"id":"1e932a56-5b9b-4d67-a876-2d9f0888e5a0","keyword":"退火处理","originalKeyword":"退火处理"}],"language":"zh","publisherId":"clkxygc201204008","title":"铁硅铝磁粉芯的磁导率和损耗性能","volume":"30","year":"2012"},{"abstractinfo":"采用新型绝缘粘结剂对铁硅铝粉进行多层绝缘包覆,制备了铁硅铝磁粉芯,利用 XRD和 B-H 分析仪对其结构、磁性能及温度特性进行了研究。结果表明,室温下,在频率为10~200 kHz 和磁通密度为0.01~0.1 T范围内,样品具有低损耗特征;随温度的升高,初始磁导率先升高后降低,磁导率温度系数较小,样品具有良好的温度稳定性;在10 kHz,0.2 T下,随温度的升高,损耗先减小后增大,在10℃时达到最小值93.66 mW/cm3。","authors":[{"authorName":"金大利","id":"a252d984-10a3-4142-bae5-0e72275af76c","originalAuthorName":"金大利"},{"authorName":"刘先松","id":"16cebbdc-feb5-4e45-a4f6-daddf53c36fb","originalAuthorName":"刘先松"},{"authorName":"黄凯","id":"afab77ad-e236-4119-ae03-8d130107edbb","originalAuthorName":"黄凯"},{"authorName":"高尚","id":"cc41761e-d1b5-4c35-ba08-c2061932c807","originalAuthorName":"高尚"}],"doi":"10.3969/j.issn.1001-9731.2014.10.011","fpage":"10055","id":"8217a034-b217-417a-8e9e-90c767864bf8","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"0fb2dfe3-af98-446b-ac35-d9c59dfab989","keyword":"铁硅铝磁粉芯","originalKeyword":"铁硅铝磁粉芯"},{"id":"9caaed9b-b40d-4746-952e-0c62dd4b3974","keyword":"磁性","originalKeyword":"磁性"},{"id":"1761813c-341e-44e1-9049-c86dd30c0aa7","keyword":"损耗","originalKeyword":"损耗"},{"id":"a143aa45-92e2-4476-9d85-4efd1ead5937","keyword":"温度特性","originalKeyword":"温度特性"}],"language":"zh","publisherId":"gncl201410011","title":"低损耗铁硅铝磁粉芯的温度特性研究","volume":"","year":"2014"},{"abstractinfo":"在f=0.3~103kHz和Bm=0.05~1.0T的范围内,考查了具有高起始磁导率的纳米晶合金的每周损耗频率关系.结果表明,在f=0.3~30kHz和Bm≤0.8T的范围内,惯用的损耗分离原则是适用的,可用Bertotti的统计理论描述P/f-f行为;对于Bm=1T,这种描述在直到150kHz的范围内都适用.大约在30kHz的高频区和Bm≤0.8T的范围内,不能采用惯用的损耗分离法,P/f-f行为可用线性方程P/f=Peh+Keclf来描述.这种描述对于Bm=1T的行为也很好地适用.","authors":[{"authorName":"张延忠","id":"d1e64bae-2714-4721-9db3-6713b64ad507","originalAuthorName":"张延忠"},{"authorName":"金慧娟","id":"c59a3784-fa87-49dd-9757-c99341d98b98","originalAuthorName":"金慧娟"},{"authorName":"施英","id":"baefa16a-e749-484b-be40-dbacb7506159","originalAuthorName":"施英"}],"doi":"10.3969/j.issn.1005-8192.2000.03.003","fpage":"10","id":"eb9148d9-7152-4ed2-8d17-c430877d70ac","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"be068870-d4a8-4326-afc4-1a470ae66ec3","keyword":"起始磁导率","originalKeyword":"起始磁导率"},{"id":"a875451e-4c11-4a64-9320-6c63e6f19a2d","keyword":"纳米晶合金","originalKeyword":"纳米晶合金"},{"id":"68c66943-ae48-4c37-aac9-2ce7b1eb51b5","keyword":"损耗","originalKeyword":"损耗"}],"language":"zh","publisherId":"jsgncl200003003","title":"高导磁Fe73.5Cu1Nb2V1Si13.5B9合金的中、高频损耗行为","volume":"7","year":"2000"},{"abstractinfo":"主要讨论了Fe-Si-Al磁粉芯粉料粒度、粘结剂用量、成型压力和热处理工艺对铁硅铝磁粉芯品质因数Q、损耗P和有效磁导率μe的影响.","authors":[{"authorName":"于海琛","id":"2463259d-4fa6-4053-be2b-6c51aee8c020","originalAuthorName":"于海琛"},{"authorName":"张胤","id":"8431d6a5-93e4-4c63-9e1f-24bd475d2ca9","originalAuthorName":"张胤"}],"doi":"10.13228/j.boyuan.issn 1005-8192.2015011","fpage":"57","id":"a8e3d39f-e088-48cb-9430-3ed75a10ad0c","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"da9f9726-bcee-42ce-be60-d733b07d3d32","keyword":"Fe-Si-Al磁粉芯","originalKeyword":"Fe-Si-Al磁粉芯"},{"id":"6da784d3-0881-4b8b-9fee-7b0d57ef5ecd","keyword":"品质因数","originalKeyword":"品质因数"},{"id":"c9d1fb51-2646-44f8-bc86-2e9d6098b051","keyword":"损耗","originalKeyword":"损耗"},{"id":"7acd0dbb-3d40-4ea4-9bd0-7181be7c237e","keyword":"有效磁导率","originalKeyword":"有效磁导率"}],"language":"zh","publisherId":"jsgncl201503012","title":"Fe-Si-Al磁粉芯性能的影响因素","volume":"22","year":"2015"},{"abstractinfo":"研究了FeSiBCuNb合金纳米晶铁芯固化成型方式在功率变压器上的应用,通过研究24μm和30 μm不同厚度带材、固化剂等对变压器铁芯成型前后性能的影响,结果表明,24μm带材可以获得更低的损耗,铁芯固化成型后损耗明显增加,导磁率变化不大,能够满足现有环形护盒铁芯在20 kHz,0.5T条件下损耗小于30 W/kg的要求,探索出新型的纳米晶功率变压器铁芯成型方式,为高频电源变压器的设计及后期线包的绕制提供了更多的选择方案.","authors":[{"authorName":"宋翀旸","id":"5017ce37-111f-4c89-bf15-484978f703ff","originalAuthorName":"宋翀旸"},{"authorName":"时红昊","id":"86b4ea8b-c2ee-40f0-9802-0f3ceb3999df","originalAuthorName":"时红昊"},{"authorName":"王立军","id":"7231f123-8470-424a-8a17-60e6edf0b852","originalAuthorName":"王立军"},{"authorName":"杜宇","id":"b4544a89-e464-42c4-b228-f566fed1999c","originalAuthorName":"杜宇"}],"doi":"","fpage":"32","id":"37f5a130-f688-4a16-b334-ea2bc09c48c4","issue":"4","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"cbb4c8dc-2cce-46e7-a691-16ce8b1da3fe","keyword":"纳米晶软磁材料","originalKeyword":"纳米晶软磁材料"},{"id":"20169512-2660-4369-8e54-ae8c7c36438a","keyword":"固化","originalKeyword":"固化"},{"id":"ac6c4352-de32-4be8-a523-ca6bab689a13","keyword":"功率变压器铁芯","originalKeyword":"功率变压器铁芯"},{"id":"9c87ba1d-9d41-45c9-a6d6-1b5eda3340c6","keyword":"损耗","originalKeyword":"损耗"}],"language":"zh","publisherId":"jsgncl201304007","title":"纳米晶薄带固化成型铁芯在中高频功率变压器上的应用","volume":"20","year":"2013"},{"abstractinfo":"采用标称成分为Fe73.5Cu1Nb3Si15.5B7(原子百分数)、带厚分别为18 μm、22 μm和26 μm的带材制成环形铁芯,经过560℃保温1h热处理后测试其性能,发现铁芯损耗随带材厚度的减小而降低,实验中用18μm和22 μm厚带材制备的铁芯与在共模电感方面处于国际领先地位的VAC公司生产的同规格铁芯在电感、阻抗、直流性能、损耗等性能相比,达到了同一水平,其中18μm厚带材制备的铁芯比VAC公司铁芯高频初始磁导率高、损耗低.","authors":[{"authorName":"李准","id":"5d24d555-9595-47cd-8313-55072a7e43a4","originalAuthorName":"李准"},{"authorName":"李德仁","id":"5d270dea-664a-433e-aa40-5e3840816e08","originalAuthorName":"李德仁"},{"authorName":"李广敏","id":"3d257a7d-cd7f-49a0-9174-1ca139d00dbc","originalAuthorName":"李广敏"},{"authorName":"卢志超","id":"40f04fd6-2ed7-4a87-a097-afcd4381fa92","originalAuthorName":"卢志超"}],"doi":"","fpage":"1","id":"7c432210-338c-413e-85b8-c307be43f9f8","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"aa9a8bfd-8d2f-424a-8158-13c0947686db","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"32df5e2f-d8f8-425d-931f-18226010c9a8","keyword":"静态磁性能","originalKeyword":"静态磁性能"},{"id":"6a073fce-3036-40f6-840c-6c853343234c","keyword":"初始磁导率","originalKeyword":"初始磁导率"},{"id":"021c577e-94ac-4332-acc4-8fbcb6666282","keyword":"损耗","originalKeyword":"损耗"},{"id":"58f620b1-061b-46cb-952c-304f9c9c9205","keyword":"电感","originalKeyword":"电感"},{"id":"5f13a6d2-353b-40e2-96bd-e75a1ef1e7fd","keyword":"阻抗","originalKeyword":"阻抗"}],"language":"zh","publisherId":"jsgncl201106001","title":"带厚对FeCuNbSiB纳米晶铁芯性能的影响","volume":"18","year":"2011"}],"totalpage":227,"totalrecord":2267}