{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对宝钢COREX-3000风口破损现象进行了分析研究,得出风口破损是高温熔损和气流冲刷磨损共同作用的结果.通过对COREX风口燃烧区热分布的分析,提出可以从5个方面采取措施减少高温熔损,延长风口寿命.基于以上研究,宝钢采用了使用宝钢小块焦代替部分山西焦和氧气氮气混合鼓风代替纯氧鼓风的措施,有效改善了风口使用寿命;同时,全面分析了该改进措施对COREX所产生的影响.分析结果表明:宝钢小块焦的使用改善了炉料的透气性,避免了风口燃烧区的热量聚集;氧气氮气混合减少了风口燃烧区的热量产生量、降低了气流的导热能力,同时在风口表面形成了氮化碳保护薄层,从而起到保护风口、延长风口使用寿命的作用.","authors":[{"authorName":"田广亚","id":"94468a82-afbd-4581-b130-c60e289594e7","originalAuthorName":"田广亚"},{"authorName":"李京社","id":"6dfc4b78-dc99-4f13-9059-1be56f66f53c","originalAuthorName":"李京社"},{"authorName":"杨宏博","id":"71e80c64-d3a4-4a04-a050-11571b1a7db2","originalAuthorName":"杨宏博"}],"doi":"","fpage":"25","id":"d39ce6d1-1a38-41b6-b66b-f84231721c5e","issue":"10","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"50d454be-ad29-4d63-89ae-69673255b292","keyword":"风口破损","originalKeyword":"风口破损"},{"id":"2833f8e1-fd3d-4971-8124-a9b6c2793d75","keyword":"氧气氮气混合","originalKeyword":"氧气氮气混合喷吹"},{"id":"2e9564a8-fed6-4f8d-bc0d-0aaefa77bb0a","keyword":"氮化碳","originalKeyword":"氮化碳"}],"language":"zh","publisherId":"gtyjxb201310006","title":"COREX风口破损原因及对策分析","volume":"25","year":"2013"},{"abstractinfo":"根据整体及各区域的物理化学约束条件建立了氧气高炉工艺综合数学模型.通过模型的计算结果对能量在不同区域的利用情况进行了分析3得出结论如下:氧气高炉无煤气循环流程的一次能耗很高,燃料比在600 kg/tHM以上,并且无法实现高温区和固体炉料区之间的能量匹配.炉顶煤气循环后,可以实现能量在高温区和固体炉料区的同时平衡;在同时满足全炉热平衡和区域热平衡的条件下,氧气高炉炉身循环煤气流程的理论燃烧温度过高,而炉缸循环煤气流程的理论燃烧温度偏低;对于氧气高炉炉身、炉缸同时循环煤气流程,随着循环煤气量的增大,焦比升高,煤比降低,理论燃烧温度可以维持在合理的范围内.","authors":[{"authorName":"高攀","id":"67e3160b-81f2-490d-b1c7-9c1c926dcae3","originalAuthorName":"高攀"},{"authorName":"李强","id":"0e69022a-8987-48d8-8d37-f82b04e602d1","originalAuthorName":"李强"},{"authorName":"张作良","id":"c562e776-544e-49b8-a59c-eee10f072a08","originalAuthorName":"张作良"},{"authorName":"张伟","id":"96f9d670-10e6-4d97-a3e9-dd71f11134e3","originalAuthorName":"张伟"},{"authorName":"邹宗树","id":"aac7152e-1b08-49f4-af4a-19d5585d8551","originalAuthorName":"邹宗树"},{"authorName":"干勇","id":"f2583ea9-25be-4bd6-b10b-66890d8f289d","originalAuthorName":"干勇"}],"doi":"","fpage":"7","id":"4aff6219-f479-48a6-94d4-046900623c17","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"1e9f7591-4bf7-4268-80f6-2b0e19ce1b9b","keyword":"炼铁","originalKeyword":"炼铁"},{"id":"1ebafbd4-7cc8-4a29-b6a6-d6437aeefd7f","keyword":"氧气高炉","originalKeyword":"氧气高炉"},{"id":"5cb0e477-380b-4541-acee-41331ff31941","keyword":"物料平衡","originalKeyword":"物料平衡"},{"id":"14b01bb6-657d-4452-baf7-ed1cd83333ce","keyword":"热平衡","originalKeyword":"热平衡"},{"id":"064b3e41-001f-46c0-bb83-752c5d606596","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"clyyjxb201301003","title":"循环煤气氧气高炉的静态模型","volume":"12","year":"2013"},{"abstractinfo":"为降低氧气高炉炼铁流程中循环煤气脱除CO2及煤气预热成本,提出了氧气高炉焦炉煤气炼铁流程,并建立了新流程能质平衡数学模型,应用该模型分别对传统高炉、传统高炉焦炉煤气、氧气高炉(鼓风氧体积分数为30%、40%、50%、100%)焦炉煤气炼铁流程主要技术参数进行计算并对比.结果表明,传统高炉少量焦炉煤气(30 m3/t)可降低燃料比13 kg/t,焦炉煤气置换焦炭的置换比为0.433 kg/m3,但是对其他参数影响不大.氧气高炉焦炉煤气流程随着富氧率提高,炉内还原势提高,CO和氢利用率下降,炉内存在还原剂表观过剩,非全氧鼓风条件下炉内没有发生氮气富集.新流程外供煤气总热值为3000 MJ/t左右,与传统高炉相比变化不大,对现有钢铁联合企业煤气供需平衡影响较小.全氧高炉焦炉煤气炼铁流程相较于目前的高炉炼铁流程可节焦43%,增煤33%,总燃料比降低20%.","authors":[{"authorName":"董择上","id":"5cb6af65-8449-4d7f-b22b-08475d9faebb","originalAuthorName":"董择上"},{"authorName":"薛庆国","id":"d03d64f1-65fb-4220-9f33-784448c14f61","originalAuthorName":"薛庆国"},{"authorName":"左海滨","id":"e54c4090-cd2f-4df4-8438-9089976bd9c0","originalAuthorName":"左海滨"},{"authorName":"佘雪峰","id":"6015e35a-0635-4ea8-b0e6-93a8a1d33eb9","originalAuthorName":"佘雪峰"},{"authorName":"王广","id":"a4237767-e7c9-4ed6-8e7f-2cbb94e92951","originalAuthorName":"王广"},{"authorName":"王静松","id":"1db05bfa-0eba-4f66-8a4e-b5a7bfe91afb","originalAuthorName":"王静松"}],"doi":"10.13228/j.boyuan.issn0449-749x.20160321","fpage":"18","id":"8507c68b-0946-4939-8001-eaa97de53765","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1523c9a6-d3b3-474d-bf6f-581b0b58d2dd","keyword":"氧气高炉炼铁","originalKeyword":"氧气高炉炼铁"},{"id":"23dc1e3c-cfd4-41bd-943a-fe4945159d18","keyword":"焦炉煤气","originalKeyword":"喷吹焦炉煤气"},{"id":"30225a6b-3369-430e-ac0e-bf6af887f4a0","keyword":"数学模型","originalKeyword":"数学模型"},{"id":"5a870684-2dc2-4492-9d61-768c0fa1492c","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"07cf53a1-5303-4721-b881-1baecf9dc148","keyword":"节能减排","originalKeyword":"节能减排"}],"language":"zh","publisherId":"gt201704005","title":"氧气高炉焦炉煤气数学模型","volume":"52","year":"2017"},{"abstractinfo":"测定了攀西地区混合煤的理化性能,并在攀钢高炉上进行了混合煤的工业性试验,瘦煤配比由10%逐渐增加到25%,煤比达到113.81?kgtFe;2000年上半年瘦煤配比平均为35.00%,煤比达到139.14?kgtFe.","authors":[{"authorName":"李真才","id":"bbbb635b-5523-4c51-8270-b1d7b720feac","originalAuthorName":"李真才"},{"authorName":"张文新","id":"a5a44327-320e-4795-ac58-7000dbe04ea3","originalAuthorName":"张文新"},{"authorName":"饶家庭","id":"8462a457-98a5-4c02-bf9d-ba9ad273ab31","originalAuthorName":"饶家庭"},{"authorName":"范云东","id":"a45ce8f1-66f7-4e0d-a175-c2e199f933dc","originalAuthorName":"范云东"},{"authorName":"钟余明","id":"291a8187-263e-4d61-86ac-9a3854ba9d36","originalAuthorName":"钟余明"},{"authorName":"王华","id":"6c51d9c9-3bc2-46ba-8d41-5f83e60b5e2f","originalAuthorName":"王华"}],"doi":"10.3969/j.issn.1004-7638.2000.04.002","fpage":"5","id":"d471a739-77ac-417c-a1e2-5b9048e6f636","issue":"4","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"f925f711-ddc6-43f4-9d86-2dffb5fb2d6e","keyword":"高炉","originalKeyword":"高炉"},{"id":"ab1f9e3a-a11d-4593-8411-6f09164a33d8","keyword":"混合煤","originalKeyword":"喷吹混合煤"},{"id":"f3cb7120-5e9f-4205-a330-9075169fde87","keyword":"瘦煤挥发分","originalKeyword":"瘦煤挥发分"},{"id":"ed4a724d-e631-4546-aae7-84ab5eaf835d","keyword":"煤比","originalKeyword":"煤比"},{"id":"cd3d818a-e134-4eb1-a127-d02fddb59e96","keyword":"置换比","originalKeyword":"置换比"}],"language":"zh","publisherId":"gtft200004002","title":"攀钢高炉混合煤的工业性试验","volume":"21","year":"2000"},{"abstractinfo":"计算分析了混合条件下,添加粉料成分及添加量对高炉炉渣性能的影响.","authors":[{"authorName":"高斌","id":"171db8f7-f40f-4b11-bccf-e88a95989802","originalAuthorName":"高斌"},{"authorName":"顾飞","id":"0d43d991-c670-4ca9-904d-f58b534fd4a9","originalAuthorName":"顾飞"},{"authorName":"史俊","id":"11ee9bd2-6087-426e-af10-6b9abecbe8af","originalAuthorName":"史俊"}],"doi":"","fpage":"11","id":"5aafa86e-03e3-476b-a789-b435cb227a4e","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6d524122-3c53-4730-b707-3d5294c40083","keyword":"高炉","originalKeyword":"高炉"},{"id":"11b13bef-6ea8-42b0-9573-97e17db6b755","keyword":"混合","originalKeyword":"混合喷吹"},{"id":"08b7a252-93ed-4f35-98fe-8a5d4129f337","keyword":"炉渣性能","originalKeyword":"炉渣性能"}],"language":"zh","publisherId":"gt199908004","title":"混合对高炉炉渣性能影响的计算分析","volume":"34","year":"1999"},{"abstractinfo":"采用数学模型预测高炉煤与废塑料混合燃料在直吹管的燃烧过程,数学模型包括气相流动、混合燃料的燃烧、辐射传热等子模型。模拟结果表明,燃料总的燃烧效率能达到90%以上,高炉煤与废塑料混合燃料在高炉的燃烧行为介于高炉单独煤粉和废塑料两者之间,高炉煤与废塑料混合燃料在理论上是切实可行的。","authors":[{"authorName":"吴复忠,金会心,李军旗","id":"07f3a272-d990-4067-9674-61d1d33cfcff","originalAuthorName":"吴复忠,金会心,李军旗"}],"categoryName":"|","doi":"","fpage":"11","id":"9e2e8c95-6518-434f-8aeb-aa7669dc7880","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"a644b631-6e59-4d3e-a64d-4d5533dfa38e","keyword":"高炉 ","originalKeyword":"高炉喷吹 "},{"id":"8d13b189-fa24-4107-86f4-ddd0b4d2b497","keyword":" blends fuel ","originalKeyword":" blends fuel "},{"id":"b854058d-fdc2-426b-8ed4-d126f6886904","keyword":" numerical simulation","originalKeyword":" numerical simulation"}],"language":"zh","publisherId":"1001-0963_2011_3_4","title":"高炉煤和废塑料混合燃料燃烧过程的数值模拟","volume":"23","year":"2011"},{"abstractinfo":"采用数学模型预测高炉煤与废塑料混合燃料在直吹管的燃烧过程,数学模型包括气相流动、混合燃料的燃烧、辐射传热等子模型.模拟结果表明,燃料总的燃烧效率能达到90%以上,高炉煤与废塑料混合燃料在高炉的燃烧行为介于高炉单独煤粉和废塑料两者之间,高炉煤与废塑料混合燃料在理论上是切实可行的.","authors":[{"authorName":"吴复忠","id":"c37d75a1-acba-42dc-868f-50674d013d73","originalAuthorName":"吴复忠"},{"authorName":"金会心","id":"68254af9-50d7-4f99-86b3-34a21bc5cdde","originalAuthorName":"金会心"},{"authorName":"李军旗","id":"0ae6edd2-a399-41d5-a5da-b04a5b2cbfab","originalAuthorName":"李军旗"}],"doi":"","fpage":"11","id":"d532f287-a233-4ee1-be0c-ca57068dca9d","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"25fe34af-04c6-44c2-80ec-1f1ac5192035","keyword":"高炉","originalKeyword":"高炉喷吹"},{"id":"0d4e7a6b-869e-4473-97a0-92861f1984b2","keyword":"混合燃料","originalKeyword":"混合燃料"},{"id":"64814637-6153-4547-8e4f-83a3fe1f0e0b","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gtyjxb201103003","title":"高炉煤和废塑料混合燃料燃烧过程的数值模拟","volume":"23","year":"2011"},{"abstractinfo":"为了研究混合时煤粉和废塑料对高炉炉腹煤气的影响,通过计算,得到不同比例混合的煤粉与废塑料时高炉炉腹煤气量及煤气成分.结果表明:随着混合燃料中废塑料比例增加,炉腹煤气量增加,煤气成分也相应改变;当PE(煤粉与聚乙烯)∶PP(聚丙烯)按5∶5混合时,炉腹煤气中φ(CO+H2)所占比例为47.96%,而单一煤粉时φ(∞+H2)所占比例为44.44%.","authors":[{"authorName":"孙向伟","id":"b3979c35-9888-4cf4-99e6-36e8938440ba","originalAuthorName":"孙向伟"},{"authorName":"沈龙龙","id":"500859c2-fbaa-4cce-9822-804e77dd3f47","originalAuthorName":"沈龙龙"},{"authorName":"刘彪","id":"b889c134-9512-4c1c-b894-937ef6ddd25d","originalAuthorName":"刘彪"},{"authorName":"魏亲睿","id":"323c8bed-d5d6-4409-89a7-92463d5ed48d","originalAuthorName":"魏亲睿"},{"authorName":"高斌","id":"5e75d172-4edc-45fd-8524-bcd098205f26","originalAuthorName":"高斌"}],"doi":"","fpage":"15","id":"e0032bd5-88ce-41cc-971f-e265769aff11","issue":"3","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"b719cd6e-fb0c-49ed-aa82-60adbc9745e8","keyword":"废塑料","originalKeyword":"废塑料"},{"id":"57f58579-93f1-4580-8291-f4108e4d867b","keyword":"煤粉","originalKeyword":"煤粉"},{"id":"c5cac5ae-dcdf-428b-bde9-8cc32406c2a2","keyword":"混合","originalKeyword":"混合喷吹"},{"id":"c4fbda04-00e1-486f-9b6c-779b7b0e5822","keyword":"炉腹煤气","originalKeyword":"炉腹煤气"}],"language":"zh","publisherId":"gtyj201303005","title":"混合煤粉和废塑料对高炉炉腹煤气的影响","volume":"41","year":"2013"},{"abstractinfo":"运用数值模拟方法,对废塑料和煤粉混合条件下直吹管和风口内的燃烧特性进行了研究.将废塑料与煤粉按不同比例混合,在不同粒径分布下时,分析了直吹管和风口内的挥发分析出和燃烧的规律.结果表明,随着混合燃料中废塑料比例增加,颗粒粒径减小,混合燃料的燃烧性能提高;从单一煤粉到煤粉与废塑料比为5∶5的混合燃料时,直吹管和风口内燃烧率从3.35%提高到36.31%.","authors":[{"authorName":"孙向伟","id":"b45acef6-9566-4b43-8a18-c54772135f1f","originalAuthorName":"孙向伟"},{"authorName":"沈龙龙","id":"eeae2746-a54e-4c35-9707-1e9246ee8b32","originalAuthorName":"沈龙龙"},{"authorName":"刘彪","id":"07f355f1-c10f-495d-80bd-45ce557246dc","originalAuthorName":"刘彪"},{"authorName":"魏亲睿","id":"e3797316-96ef-4ea3-a31b-ec01fc1c5b74","originalAuthorName":"魏亲睿"},{"authorName":"高斌","id":"1cac9996-16e1-4a58-89b9-77e94b3f6b02","originalAuthorName":"高斌"}],"doi":"","fpage":"1","id":"55e760ae-b9cb-4e2b-a180-ef1c8a4a2892","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"38fd04c3-de30-4c28-8657-88dc795fa76a","keyword":"废塑料","originalKeyword":"废塑料"},{"id":"14e1879f-fb5f-4713-b05f-5db28ef8e936","keyword":"煤粉","originalKeyword":"煤粉"},{"id":"38fb0649-836e-404e-86db-c7090ddba3d6","keyword":"混合","originalKeyword":"混合喷吹"},{"id":"9908fee2-4daf-45a6-8566-fd84996288d9","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gtyj201301001","title":"在直吹管和风口内混合煤粉和废塑料的数值模拟","volume":"41","year":"2013"},{"abstractinfo":"利用数值模拟的方法对几种典型方式的底钢包内的流动与混合过程进行了理论分析结果表明,变化方式,即从中心吹到偏心、从单喷嘴吹到双喷嘴,钢包内的流动混合状态得到改善,因而有助于缩短钢包内的均匀混合时间","authors":[{"authorName":"李宝宽","id":"77389e1b-508f-4fcf-99bc-1e17b11a24f0","originalAuthorName":"李宝宽"},{"authorName":"赫冀成","id":"300adbf6-5198-48da-b72c-2d6113b62fdd","originalAuthorName":"赫冀成"},{"authorName":"陆钟武","id":"db5eee25-821d-4937-9956-f14fd9f42037","originalAuthorName":"陆钟武"}],"categoryName":"|","doi":"","fpage":"47","id":"2254f080-0815-4558-87da-babd123cb437","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"c0742e8c-4816-4efa-a3af-fc450a8ec77a","keyword":"底钢包","originalKeyword":"底吹钢包"},{"id":"6b5f8b2a-90c7-4a65-abbe-6b995443ab31","keyword":"numerical simulation","originalKeyword":"numerical simulation"},{"id":"055de414-d969-4ff5-acff-58f616974c68","keyword":"flow","originalKeyword":"flow"}],"language":"zh","publisherId":"0412-1961_1993_4_4","title":"底钢包内流动与混合的数值模拟","volume":"29","year":"1993"}],"totalpage":1412,"totalrecord":14112}