{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用Cu粉、Ti粉、石墨粉组成的混合粉末连接Cf/SiC陶瓷基复合材料和TC4钛合金,采用X射线衍射、扫描电镜和能谱仪对接头组织结构进行分析.结果表明:在Cu-(15~30)Ti(ω,%)粉末中加入适量石墨粉作钎料,经900~950℃、5~30 min真空钎焊,获得了完整的原位合成TiC增强的复合接头.通过在连接层中原位合成一定体积分数TiC可以明显降低接头热应力.钎料石墨颗粒中的C元素和液相连接层中Ti元素发生相互扩散,形成了残余石墨颗粒周围的TiC反应层和分布在连接层中的TiC颗粒.反应速率主要受C元素由石墨颗粒向液相连接层的扩散速率所控制.","authors":[{"authorName":"班永华","id":"6fd0880d-2815-4175-afc9-fa049a5da0dc","originalAuthorName":"班永华"},{"authorName":"黄继华","id":"1eebaf4f-dd87-459c-8d60-ccc4446da229","originalAuthorName":"黄继华"},{"authorName":"张华","id":"c96ceaae-ca6e-4151-9806-8e83544fe14e","originalAuthorName":"张华"},{"authorName":"赵兴科","id":"def4a028-3dc1-4fd8-bdb8-e9a5e50d5c2e","originalAuthorName":"赵兴科"},{"authorName":"张志远","id":"52dbf2d0-30ce-43b1-a39b-26d9e3afb8c9","originalAuthorName":"张志远"}],"doi":"","fpage":"713","id":"ed75842f-7af3-476e-a30c-caa42869ebe7","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"47f8ff4c-5638-4fc2-92f4-d5105c3cab21","keyword":"Cf/SiC陶瓷基复合材料","originalKeyword":"Cf/SiC陶瓷基复合材料"},{"id":"271dfb6b-198c-4878-bea3-c8a73716806e","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"629570c4-0ae5-4405-8a4e-5125cde4a3e6","keyword":"原位合成TiC","originalKeyword":"原位合成TiC"},{"id":"cfd7cd03-5798-4491-8716-d5be54399eeb","keyword":"反应复合","originalKeyword":"反应复合"},{"id":"f729f3a8-85a3-4359-9ff8-ff17637566cf","keyword":"扩散连接","originalKeyword":"扩散连接"}],"language":"zh","publisherId":"xyjsclygc200904033","title":"Cu-Ti-C反应复合.扩散连接Cf/SiC复合材料和TC4钛合金接头的组织结构","volume":"38","year":"2009"},{"abstractinfo":"采用化学镀法制备了钯/陶瓷中空纤维复合膜,并将该膜反应器用于水煤气变换反应,考察了水碳摩尔比、反应温度及压力对反应的影响. 结果表明,膜反应器中的CO转化率不仅可以超过固定床反应器中的转化率,在一定条件下还可以超过反应的平衡转化率.","authors":[{"authorName":"王卫平","id":"20cdf8ad-35e9-443d-92ce-0e3a24f3def8","originalAuthorName":"王卫平"},{"authorName":"潘秀莲","id":"7f00321f-aebc-40ed-8cfe-8791ddd9e8df","originalAuthorName":"潘秀莲"},{"authorName":"张小亮","id":"fc5cfd29-33de-472c-835d-6f2cc9116907","originalAuthorName":"张小亮"},{"authorName":"熊国兴","id":"aca05965-d602-482a-a305-ac86931836be","originalAuthorName":"熊国兴"},{"authorName":"杨维慎","id":"275248bd-e598-4c33-98df-1b5f865a913c","originalAuthorName":"杨维慎"}],"doi":"","fpage":"1042","id":"cf44b1cf-c4bd-4210-b449-3ca6243cd1dc","issue":"12","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"8e7f34ec-7792-46c2-9b95-3fbb7c6457df","keyword":"中空纤维膜","originalKeyword":"中空纤维膜"},{"id":"7988e103-92da-44bf-944d-a91770f69d81","keyword":"钯","originalKeyword":"钯"},{"id":"ce4509f5-d236-466c-b4c8-e495e294092a","keyword":"膜反应器","originalKeyword":"膜反应器"},{"id":"e0b58eb7-b154-4f5a-8a1d-44b0182d7e02","keyword":"水煤气变换反应","originalKeyword":"水煤气变换反应"},{"id":"1d3abf43-fdc2-4844-8732-213994e15d50","keyword":"平衡转化率","originalKeyword":"平衡转化率"}],"language":"zh","publisherId":"cuihuaxb200512003","title":"钯/陶瓷中空纤维复合反应器中的水煤气变换反应","volume":"26","year":"2005"},{"abstractinfo":"以Ti粉、纯Al和碳纤维为原料,采用浸渗-反应合成法研制了Cf/Ti-Al复合材料,根据DSC测试结果确定反应合成温度.结果表明:在后期加热过程中,随着反应温度的升高,TiAl3的含量先增多后减少,碳纤维与Al的界面反应逐渐增强,Al4C3和TiC逐渐增多,在高温阶段,氧参与反应,复合材料中有Al2O3生成.通过SEM和XRD测试分析了复合材料内部的显微组织及相组成,同时探讨了Cf/Ti-Al复合材料中各物相形成过程的反应机理.","authors":[{"authorName":"刘艳梅","id":"246e3c54-209c-4039-b61c-1503b485ddab","originalAuthorName":"刘艳梅"},{"authorName":"武高辉","id":"36c7519c-019a-4975-8073-5d0f27a4bd45","originalAuthorName":"武高辉"},{"authorName":"修子扬","id":"4d4ba46b-0b2d-435f-aa34-13944dfdac72","originalAuthorName":"修子扬"},{"authorName":"姜龙涛","id":"424cbafc-9400-43b3-a1f2-c419c08f7191","originalAuthorName":"姜龙涛"},{"authorName":"姜国庆","id":"8b5b66fa-f0ea-474b-8605-136748e90c6d","originalAuthorName":"姜国庆"}],"doi":"","fpage":"807","id":"cbb6ecb8-dedb-4527-b4f0-581a4b0862a4","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3ef6092d-cae8-4c9e-9664-a9996342c17a","keyword":"钛铝金属间化合物","originalKeyword":"钛铝金属间化合物"},{"id":"60ae6d0a-5b84-4daa-b12e-1ca33da6bea8","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"0dca6be8-db81-4242-895f-15623911fd4b","keyword":"碳纤维","originalKeyword":"碳纤维"}],"language":"zh","publisherId":"xyjsclygc200905013","title":"浸渗-反应合成Cf/Ti-Al复合材料的反应机理","volume":"38","year":"2009"},{"abstractinfo":"采用反应合成法与粉末冶金法制备了Ag/CuO复合材料,研究了2种制备方法所获得Ag/CuO复合材料的显微组织与性能.结果表明,反应合成法制备的Ag/CuO复合材料具有独特的环状组织特点,这一特点决定了反应合成制备的Ag/CuO复合材料的机械性能和电学性能要好于粉末冶金制备的Ag/CuO复合材料.在220 V交流和24 V直流实验条件下,反应合成制备的Ag/CuO复合材料的电寿命是粉末冶金制备的Ag/CuO复合材料的2倍.","authors":[{"authorName":"周晓龙","id":"facecc24-328d-4b09-b984-bf8144fff8c9","originalAuthorName":"周晓龙"},{"authorName":"陈敬超","id":"faf04aab-c647-43bc-8654-bcda29ddc370","originalAuthorName":"陈敬超"},{"authorName":"曹建春","id":"ae40f3b4-3b54-462c-b16c-eb0984b5c221","originalAuthorName":"曹建春"},{"authorName":"杜焰","id":"d45498aa-6434-4596-90e5-dccf1e251a66","originalAuthorName":"杜焰"},{"authorName":"张昆华","id":"c52c1520-b65e-4020-ac25-3e6150de20b2","originalAuthorName":"张昆华"},{"authorName":"甘国友","id":"184ccaea-7f22-44d5-9ad2-aff3a7549f22","originalAuthorName":"甘国友"},{"authorName":"闫杏丽","id":"e979730b-b457-4dc5-957c-c21eebf2fd73","originalAuthorName":"闫杏丽"}],"doi":"","fpage":"814","id":"885627e0-d3c2-47e6-9afc-26ea8ad60296","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"e3a011eb-7ec0-4762-ae3b-ddc3f691970d","keyword":"反应合成","originalKeyword":"反应合成"},{"id":"27d1a800-7eee-4251-9bc4-7ae283fbe4c8","keyword":"Ag/CuO","originalKeyword":"Ag/CuO"},{"id":"1e3e0d3e-36aa-4bfb-97be-77845b9d03f4","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"d32a06e5-2f4e-4b6c-8011-543c177410ba","keyword":"组织与性能","originalKeyword":"组织与性能"}],"language":"zh","publisherId":"xyjsclygc200605035","title":"银氧化铜复合材料反应合成制备","volume":"35","year":"2006"},{"abstractinfo":"为了实现Cu对纳米SiC的表面包覆改性,分别采用歧化反应和置换反应两种方法制备了Cu/纳米SiC复合粉体.利用扫描电子显微镜、透射电子显微镜和能谱仪研究了Cu/纳米SiC复合粉体的微观形貌、聚集状态、粒径以及Cu和纳米SiC的质量分数.实验结果表明:单个复合粒子的粒径约为100 nm;针对随机选择的两种方法制备的复合粉体的两个不同区域进行的分析表明,歧化反应条件下Cu的质量分数分别为37%和35%,成分均匀;置换反应条件下Cu的质量分数分别为79%和25%,成分差异大.歧化反应法比置换反应法的包覆效果好,实现了Cu对纳米SiC的均匀性包覆.","authors":[{"authorName":"杜建华","id":"7910773e-6533-446d-a375-e70509d7b88c","originalAuthorName":"杜建华"},{"authorName":"李超","id":"06a5c847-e57e-486c-82d2-3879306f38f0","originalAuthorName":"李超"},{"authorName":"陈宗浩","id":"8fe01c2d-962c-4f02-aa14-252556f03397","originalAuthorName":"陈宗浩"},{"authorName":"韩文政","id":"1a61d2db-bc5e-47f4-afdd-ed36ae620d39","originalAuthorName":"韩文政"}],"doi":"10.3969/j.issn.1005-0299.2007.03.010","fpage":"334","id":"87eb16a3-0707-47d8-92b4-95f3b4c59f2b","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"4788fdbb-c477-4063-a686-8a89234c7b52","keyword":"歧化反应","originalKeyword":"歧化反应"},{"id":"167702ce-a4d6-4d47-a39a-444f7604ee1b","keyword":"置换反应","originalKeyword":"置换反应"},{"id":"7c51a529-62a2-480d-b63e-9cea7cc13468","keyword":"包覆","originalKeyword":"包覆"},{"id":"f32b315d-86f7-42d5-b608-3546864b25d4","keyword":"Cu","originalKeyword":"Cu"},{"id":"b8247edc-0697-4c7d-9423-b28c992c5cc2","keyword":"纳米SiC","originalKeyword":"纳米SiC"}],"language":"zh","publisherId":"clkxygy200703010","title":"歧化反应及置换反应制备Cu/纳米SiC复合粉体","volume":"15","year":"2007"},{"abstractinfo":"采用反应合成法制备Ag/SnO2复合材料,并从电子-原子层次详细阐述反应中合金中间化合物向富集区转变、寻找过渡态最后生成稳定相的过程.结果表明:Sn的活化性能高于Ag,氧源的参与对反应过程起主导作用,且初始反应混合物中分解游离态的O是氧化反应能持续、彻底进行的另一个重要途径,最后预测出完整的反应路径.","authors":[{"authorName":"刘琳静","id":"18bf623b-68db-43d2-bfca-83d405e90152","originalAuthorName":"刘琳静"},{"authorName":"陈敬超","id":"ed8cafe7-9f99-4aba-b5e1-7b43c854a93f","originalAuthorName":"陈敬超"},{"authorName":"冯晶","id":"217e9319-5559-487d-ad1a-997e1fe3b899","originalAuthorName":"冯晶"},{"authorName":"于杰","id":"8fab7f96-2779-48e1-966f-946c453abb56","originalAuthorName":"于杰"},{"authorName":"杜晔平","id":"b8174c66-2773-45d3-9598-5917b8f26a57","originalAuthorName":"杜晔平"}],"doi":"","fpage":"935","id":"76a4551b-2ef8-4679-b44e-8d150ea76680","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"ea162e9d-2e95-4aed-96b1-72d3914c809e","keyword":"Ag/SnO2","originalKeyword":"Ag/SnO2"},{"id":"640eef13-9f8d-4fe3-b3a9-f2f36e632546","keyword":"第一原理","originalKeyword":"第一原理"},{"id":"3c368abc-8054-447f-8f7f-08dba37f3441","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"efeb7c9a-4c6a-4c02-8dc4-35de1ceb2969","keyword":"反应路径","originalKeyword":"反应路径"}],"language":"zh","publisherId":"xyjsclygc201105041","title":"反应合成法制备Ag/SnO2复合材料中的反应路线","volume":"40","year":"2011"},{"abstractinfo":"利用高速摄像机、离子电流测试系统,长焦镜头等对管道内甲烷/煤尘复合体系中传播火焰进行了实验研究.实验研究结果表明,甲烷/煤尘复合体系中的燃烧反应可分为三个阶段构成,以甲烷燃烧为主的气相燃烧反应阶段、以煤尘多相燃烧为主的燃烧反应阶段和以炭燃烧为主的燃烧反应阶段.随着煤尘粒径的增大,复合火焰中以甲烷燃烧为主的气相火焰区的燃烧时间呈现小幅增大趋势,而以煤尘燃烧为主的多相燃烧火焰区的燃烧时间则有较大幅度的增大.","authors":[{"authorName":"陈东梁","id":"39f77061-3182-442e-96db-f5d81f9166a1","originalAuthorName":"陈东梁"},{"authorName":"孙金华","id":"ec63c2b4-02d4-4dd2-9c80-1efde79c52d6","originalAuthorName":"孙金华"},{"authorName":"刘义","id":"b393e248-4ad9-4b24-932a-b1bea95dfcbb","originalAuthorName":"刘义"},{"authorName":"王青松","id":"2c764aca-3e22-43ec-86f0-23f148d71b4a","originalAuthorName":"王青松"}],"doi":"","fpage":"1243","id":"38eb719a-b6a4-45a6-a75b-922ae5188d86","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a39f4e66-c756-4d5f-8997-a1c2ef77ce2d","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"b4bae6cb-d4ef-4f2d-b309-434de7379fef","keyword":"煤尘","originalKeyword":"煤尘"},{"id":"46d16450-231a-4046-bdcf-c40ebf436229","keyword":"复合火焰","originalKeyword":"复合火焰"},{"id":"857d9086-c146-4bb5-9c2f-2ff7d0eb8be9","keyword":"燃烧反应","originalKeyword":"燃烧反应"}],"language":"zh","publisherId":"gcrwlxb200807044","title":"甲烷/煤尘复合体系燃烧反应特性研究","volume":"29","year":"2008"},{"abstractinfo":"通过分析间/对苯二酚-甲醛复合气凝胶反应体系的紫外吸收光谱,推断了该体系的反应历程应该是:间苯二酚与甲醛发生加成反应生成羟甲基化合物,而对苯二酚不参与跟甲醛的加成反应,但是,间苯二酚和对苯二酚的酚环上未被取代的活泼氢共同参与跟羟甲基之间的缩聚反应,参与凝胶核的形成,凝胶核继续生长并相互交联形成纳米网络结构.为进一步增强该推论的可靠性,研究了反应体系的红外光谱(FTIR)和透射电镜(TEM)图像.","authors":[{"authorName":"王金凤","id":"7265b12f-d687-43e6-a10b-0be1f147cad1","originalAuthorName":"王金凤"},{"authorName":"高涛","id":"35c4518a-0cf4-4fa4-a8f3-1928646a2e5a","originalAuthorName":"高涛"},{"authorName":"王朝阳","id":"f73703aa-a8a3-472c-85c7-e839e95939c2","originalAuthorName":"王朝阳"},{"authorName":"唐永建","id":"ac2b5537-f618-49ef-9213-539bbfa34602","originalAuthorName":"唐永建"},{"authorName":"刘伟民","id":"bb964b94-b060-4ad3-a269-7385ccaa0885","originalAuthorName":"刘伟民"}],"doi":"","fpage":"142","id":"8947715d-a00b-444b-a09c-f5ae33b99573","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"13b7ed31-4efe-4adb-846d-ee22a8c0d0e7","keyword":"紫外光谱","originalKeyword":"紫外光谱"},{"id":"93e84525-5611-4e6a-b2b1-86b4c04413e4","keyword":"红外光谱","originalKeyword":"红外光谱"},{"id":"6e421ee0-e879-4279-81a2-aeb4dd7acb41","keyword":"复合气凝胶","originalKeyword":"复合气凝胶"}],"language":"zh","publisherId":"cldb200605041","title":"复合气凝胶RHF的制备及反应历程研究","volume":"20","year":"2006"},{"abstractinfo":"本文利用熔铸法研究了铁基复合材料的反应合成工艺和显微组织.结果表明:用液相原位反应合成法制备TiC/Fe基复合材料涂层是可行的;反应合成的TiC颗粒增强的Fe基复合材料涂层与基体没有明显的界面,涂层与基体结合状态良好;保温时间是影响TiC颗粒的大小、数量、及涂层厚度的重要因素之一.基体合金中含Ti为4%的样品保温2分钟后涂层厚度约为250μm,而保温7分钟后涂层厚度约为400μm,运用动力学计算对涂层厚度进行了理论计算,计算结果与实验结果的变化规律相似.","authors":[{"authorName":"潘复生","id":"e12099e7-8af8-4d3f-b8da-acbf3abda0f2","originalAuthorName":"潘复生"},{"authorName":"胡永平","id":"63a32940-4bd9-44a1-8c76-e5a0a51af7bb","originalAuthorName":"胡永平"},{"authorName":"张静","id":"cf22b80c-37b3-4391-ad27-f1e57b5fe627","originalAuthorName":"张静"},{"authorName":"汤爱涛","id":"2184eaaf-0ab0-4da4-baff-9075ab758347","originalAuthorName":"汤爱涛"},{"authorName":"孙善长","id":"5401a6f9-0602-4964-9e5b-dc0d739ddfbd","originalAuthorName":"孙善长"},{"authorName":"雍岐龙","id":"90a37652-35bf-4006-bb27-3fab6a30ce27","originalAuthorName":"雍岐龙"}],"doi":"10.3969/j.issn.1673-2812.2000.z1.069","fpage":"298","id":"195adbd8-a27c-4393-bfca-9d06b96f2b0c","issue":"z1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"483630d5-40fb-4faa-a695-9cb876e0a909","keyword":"铁基复合材料","originalKeyword":"铁基复合材料"},{"id":"5c1dd042-badd-44a9-a9ea-3350e05cafea","keyword":"涂层","originalKeyword":"涂层"},{"id":"9c1768d4-5a48-4dc1-8395-59d7988f4770","keyword":"反应合成","originalKeyword":"反应合成"}],"language":"zh","publisherId":"clkxygc2000z1069","title":"铁基复合材料涂层的原位反应合成","volume":"18","year":"2000"},{"abstractinfo":"将WO3、C和Mg粉末按摩尔比为1:1:3混合,在室温下用高能球磨法对其进行球磨,经XRD、SEM 和TEM分析表明, 在球磨到4.7 h时,WO3、石墨和镁之间发生氧化还原反应直接生成了WC和MgO粉末,之后随球磨时间的延长,粉末不断细化.球磨50 h后,得到WC晶粒度和颗粒度分别约为25 nm和100 nm的WC/MgO复合粉末.实验结果和热动力学分析表明,WC/MgO的合成是一个自蔓延反应过程,此反应可以在很短的时间内完成.","authors":[{"authorName":"张梅琳","id":"330dfd8b-5fad-4152-a95e-d43511965c44","originalAuthorName":"张梅琳"},{"authorName":"朱世根","id":"af3c4d2d-5d36-4eea-8060-c25978995364","originalAuthorName":"朱世根"}],"doi":"10.3969/j.issn.1671-6620.2009.03.006","fpage":"179","id":"bee2dbde-3b78-45c8-88d3-3461d4dd0cb2","issue":"3","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"35084c60-1795-49b2-98ec-f41d17b205d5","keyword":"高能球磨","originalKeyword":"高能球磨"},{"id":"2d53b5a2-66c7-4683-a292-4b88c08393b1","keyword":"纳米粉末","originalKeyword":"纳米粉末"},{"id":"b7513f15-337a-4bc0-873b-ab802163dafc","keyword":"动力学","originalKeyword":"动力学"},{"id":"278dba24-8fc5-4f1d-abd5-86aef4a34151","keyword":"自蔓延反应","originalKeyword":"自蔓延反应"},{"id":"02901812-1fcd-450f-a3bb-725c30c9eb59","keyword":"WC/MgO","originalKeyword":"WC/MgO"}],"language":"zh","publisherId":"clyyjxb200903006","title":"反应高能球磨制备纳米WC/MgO复合粉末","volume":"8","year":"2009"}],"totalpage":5746,"totalrecord":57455}