{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用原位自生法合成的纳米晶粒细化剂,成功的克服了颗粒团聚,有效的抑制了颗粒的沉降.本试验用其对ZL101合金的细化行为进行了研究.试验结果表明:加入量为0.2%(质量分数)时,纳米晶粒细化剂可有效地细化初晶α-Al,改善共晶硅的形貌及尺寸,细化后铸态α-Al枝晶尺寸由44 μm减小至23 μm;经T6处理的细化后试样其拉伸断口为韧窝断口,且韧窝明显多于未细化试样;加入细化剂后保温30 min,与未细化合金相比,抗拉强度提高了28MPa,屈服强度提高了22 MPa,延伸率增加了2.6%;同时细化后合金的阻尼性能较未细化合金有了大幅提高,0.5 Hz时细化后室温阻尼性能Q-1=13×10-3,较之细化前Q-1提高了5×10-3.","authors":[{"authorName":"张亦杰","id":"3b94e6e2-f579-4478-913a-dce994d24ff5","originalAuthorName":"张亦杰"},{"authorName":"乐永康","id":"c3bd090b-fa2f-4a2e-bbb2-5a69902c01ac","originalAuthorName":"乐永康"},{"authorName":"马乃恒","id":"4b3463fc-c215-4b24-86d4-0198d453222d","originalAuthorName":"马乃恒"},{"authorName":"王浩伟","id":"d3a7845a-a5db-470a-a991-990c7e12c29d","originalAuthorName":"王浩伟"},{"authorName":"厉松春","id":"74cff856-8367-4659-8d50-26cca68f4fe1","originalAuthorName":"厉松春"}],"doi":"","fpage":"476","id":"e91e6163-7ed1-4d94-84a6-97c93c88a7b3","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4298be71-1970-4373-b357-d669191a9f21","keyword":"晶粒细化","originalKeyword":"晶粒细化"},{"id":"4871ba72-4b56-4e1d-a041-9543710bb4de","keyword":"纳米晶粒细化剂","originalKeyword":"纳米晶粒细化剂"},{"id":"c259f182-411b-423c-9aec-8f63d6354c58","keyword":"阻尼性能","originalKeyword":"阻尼性能"}],"language":"zh","publisherId":"xyjsclygc200603033","title":"AlTiB纳米细化剂对ZL101合金力学及阻尼性能的影响","volume":"35","year":"2006"},{"abstractinfo":"综述了碳纳米管细化金属晶粒的研究现状,主要包括镁基、铝基、铅锡基、镍基、铁基等,并指出将碳纳米管加入镁、铝、铅、铁、镍基金属合金中都可以明显地细化这些合金材料的基体组织,同时阐述了目前假设的碳纳米管细化晶粒的机理:提供了较多优先形核的位置和阻碍晶粒的长大.","authors":[{"authorName":"曾刚","id":"8442f4d3-f273-4462-8075-c0103cbb8218","originalAuthorName":"曾刚"},{"authorName":"曾效舒","id":"a76073e5-4c81-4a5b-9e35-c0390ff21056","originalAuthorName":"曾效舒"},{"authorName":"黄秋玉","id":"c002c803-0e6a-429e-a844-206c54276036","originalAuthorName":"黄秋玉"},{"authorName":"周国华","id":"d2c36e6d-07b9-4658-aa7b-333923345a80","originalAuthorName":"周国华"}],"doi":"","fpage":"134","id":"7ef15a5e-3f70-42d7-8408-c68ebcd14139","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"25033bac-2af7-40d6-bb1a-0f9984856d3f","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"22e2da3e-a3c8-4c55-b06f-38c7bfdbf3d1","keyword":"金属","originalKeyword":"金属"},{"id":"42968093-1d95-4311-80a4-6e2e0816df25","keyword":"细化晶粒","originalKeyword":"细化晶粒"}],"language":"zh","publisherId":"cldb201211027","title":"碳纳米管泛用合金晶粒细化剂的作用","volume":"26","year":"2012"},{"abstractinfo":"采用自蔓延高温合成(SHS)技术直接合成了Al-80%TiC和Al-50%TiC晶粒细化剂.研究了这两种细化剂的相组成、结构及对工业纯铝的晶粒细化效果,并与商用Al-5Ti-1B细化剂进行了对比.结果表明:合成的细化剂由TiC和α-(Al)两相组成,TiC粒子的尺寸和分布对细化剂的晶粒细化效果有显著影响.Al-80%TiC细化剂中TiC粒子尺寸较大(2~5 μm)且呈聚集成团分布,其晶粒细化效果较差.合成的Al-50%TiC细化剂的晶粒细化效果略优于Al-5Ti-1B细化剂.加入0.1%的该细化剂就能使凝固试样的结构由粗大的柱状晶转变成细小的等轴晶(平均晶粒尺寸120μm),且这种晶粒细化效果可保持90 min.SEM和TEM分析显示,Al-50%TiC细化剂中原位合成的TiC粒子具有亚微米尺寸(0.4~0.9 μm),且在高温铝液中具有较强的稳定性,从而赋予该细化剂良好的晶粒细化效果和强的抗晶粒细化衰退能力.","authors":[{"authorName":"严有为","id":"43783e8f-1a83-4296-a6aa-ab56801b3d26","originalAuthorName":"严有为"},{"authorName":"刘生发","id":"a32babd1-3606-4b74-8fd8-5b975d51721b","originalAuthorName":"刘生发"},{"authorName":"范晓明","id":"2eba7143-8aed-476e-bd9d-0e4976fd3a7f","originalAuthorName":"范晓明"},{"authorName":"傅正义","id":"7dbef34b-8aca-4442-8493-df0710896817","originalAuthorName":"傅正义"},{"authorName":"魏伯康","id":"6d701c0b-aab3-45d6-afc1-ed0ef4adcd4c","originalAuthorName":"魏伯康"}],"doi":"","fpage":"977","id":"e981086d-8832-4e9c-aa5d-b9038bc896d9","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"7dc1c77e-4884-40e6-a62f-f497e8b1c882","keyword":"自蔓延高温合成","originalKeyword":"自蔓延高温合成"},{"id":"ce2d123a-0140-4c41-bf39-b8f8607969a4","keyword":"Al-TiC晶粒细化剂","originalKeyword":"Al-TiC晶粒细化剂"},{"id":"b619e92a-265b-40af-bab2-87e747aa2357","keyword":"工业纯铝","originalKeyword":"工业纯铝"},{"id":"10fd7416-9e8f-47f6-bac8-75b6589f26e4","keyword":"晶粒细化","originalKeyword":"晶粒细化"}],"language":"zh","publisherId":"zgysjsxb200205024","title":"自蔓延高温合成Al-TiC晶粒细化剂及其晶粒细化效果","volume":"12","year":"2002"},{"abstractinfo":"分别采用Al-5Ti-1B、Al-10Ti、Al-4B合金和TiB2粉末对纯铝进行细化实验,比较了TiAl3、TiB2和AlB2对纯铝的晶粒细化作用,利用光学显微镜、X射线衍射仪、扫描电镜和透射电子显微镜研究了Al-5Ti-1B合金的晶粒细化机理.结果表明,TiAl3是铝晶粒的有效异质形核相,但Al-5Ti-1B合金中的TiAl3因在铝熔体中会熔化而不是铝晶粒的直接形核相.单独的AlB2和TiB2都不是铝晶粒的有效异质形核相,但TiB2通过表面包覆TiAl3后可成为铝晶粒的有效异质形核相.Al-5Ti-1B合金的晶粒细化机理为TiAl3熔解于铝熔体中释放Ti原子,部分Ti原子通过浓度起伏形成TiAl3,TiAl3再与铝熔体发生包晶转变形成α-Al晶粒直接起到晶粒细化作用;部分Ti原子在TiB2表面偏聚形成TiAl3,TiAl3再与铝熔体发生包晶转变形成α-Al晶粒起到晶粒细化作用.","authors":[{"authorName":"王顺成","id":"3d74a315-a66c-401e-97eb-1dbc0e4a2ddf","originalAuthorName":"王顺成"},{"authorName":"徐静","id":"5fe61056-b961-4901-8089-4a59a7ce6329","originalAuthorName":"徐静"},{"authorName":"王海艳","id":"12fcd17b-b2ab-40fd-8948-558d5905c7b1","originalAuthorName":"王海艳"},{"authorName":"郑开宏","id":"3e63f48f-6077-48b2-90df-f01dba3479dd","originalAuthorName":"郑开宏"},{"authorName":"戚文军","id":"e8b034be-1dbc-4445-bc5e-014ed526643b","originalAuthorName":"戚文军"}],"doi":"","fpage":"123","id":"bfb753e1-3ff4-489e-8ae2-cc1df643232b","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"66d52279-e219-43af-85b1-387f4cecdb34","keyword":"晶粒细化剂","originalKeyword":"晶粒细化剂"},{"id":"7823dd9f-6053-487e-af0c-1493bb9bfdf5","keyword":"Al-5Ti-1B合金","originalKeyword":"Al-5Ti-1B合金"},{"id":"0b47521e-9e9a-4072-98f6-d2cad930b4d2","keyword":"异质形核","originalKeyword":"异质形核"},{"id":"e876456c-dd9f-4f80-b784-4d613632a69c","keyword":"细化机理","originalKeyword":"细化机理"}],"language":"zh","publisherId":"cldb201402031","title":"铝晶粒细化剂AI-STi-1B合金的晶粒细化机理","volume":"28","year":"2014"},{"abstractinfo":"AlTiC是目前铝及铝合金晶粒细化剂中研究的热点.综述了AlTiC的发展背景和历程,并对其在工业中的应用做了说明.比较全面地介绍了国内外的发展现状及各研究单位的制备工艺.阐明了现存的几种晶粒细化机理.由于AlTiC比AlTiB表现出更大的优势,所以AlTiC具有很好的发展前景.","authors":[{"authorName":"王永锋","id":"6f92cdf8-db30-4554-b950-6dd29c735a58","originalAuthorName":"王永锋"},{"authorName":"夏天东","id":"373807c6-1a10-479f-82ad-349b16d95fe0","originalAuthorName":"夏天东"},{"authorName":"赵文军","id":"32b5e996-40bc-443b-ae54-97c8555ac838","originalAuthorName":"赵文军"},{"authorName":"刘天佐","id":"7cbd75f6-9988-4e17-b4b2-a20eef5f1ebb","originalAuthorName":"刘天佐"},{"authorName":"侯运丰","id":"c7fdafe8-1f60-4a51-b530-edd90fe72089","originalAuthorName":"侯运丰"},{"authorName":"曹静","id":"41686be9-e20d-4603-be87-34b9195655b1","originalAuthorName":"曹静"}],"doi":"","fpage":"73","id":"5aeaf0be-e85c-4c50-8c99-e154f29552df","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"27f3d044-303d-4a92-b8c6-b9871c94da65","keyword":"AlTiC","originalKeyword":"AlTiC"},{"id":"b65bac14-1af0-4196-8e70-8c2965ce8a69","keyword":"TiC","originalKeyword":"TiC"},{"id":"4ca2f3d2-7cd0-481d-97da-32690a9588fb","keyword":"晶粒细化剂","originalKeyword":"晶粒细化剂"},{"id":"1e210099-d468-4645-a3a5-d72e64392d7d","keyword":"细化机理","originalKeyword":"细化机理"},{"id":"cbe078ea-905d-4a9e-81c7-6831ef386e68","keyword":"中间合金","originalKeyword":"中间合金"}],"language":"zh","publisherId":"cldb200510019","title":"AlTiC晶粒细化剂的制备工艺及研究现状","volume":"19","year":"2005"},{"abstractinfo":"阐述了铝行业用细化剂的历史和现状,提出了Al-Ti-C和Al-Ti-B-RE两大发展方向.对钛硼中间合金的制备工艺和线材成形方法进行了对比,并分析归纳了现有细化机理.细化机理的研究仍然没有统一认识,但都肯定了TiC、TiB2和TiAl3的作用.Al-Ti-B-RE细化效果好、长效性好,是一种很有前景的细化材料,但其理想的成分配比、制备工艺和细化机制还缺乏系统的研究.","authors":[{"authorName":"陈亚军","id":"45ed4840-d51a-43e4-869a-76f10224e271","originalAuthorName":"陈亚军"},{"authorName":"许庆彦","id":"a616f41e-3691-403f-879f-ef708b8abcf3","originalAuthorName":"许庆彦"},{"authorName":"黄天佑","id":"f636ae8e-75b7-4737-ab16-c22edfd392d2","originalAuthorName":"黄天佑"}],"doi":"","fpage":"57","id":"d89918f0-c2cf-44cc-b43b-301c2c740b66","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b371f5d8-86d3-40ed-ba84-3c8111381e6b","keyword":"中间合金","originalKeyword":"中间合金"},{"id":"8e8fe1ff-dc83-4355-9b54-b3f9646959f7","keyword":"细化剂","originalKeyword":"细化剂"},{"id":"90ce8868-8ad5-44de-83b2-caa72273dfa6","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"7ec871d9-c5ff-4c7f-ad09-7b9664a22152","keyword":"细化衰退","originalKeyword":"细化衰退"},{"id":"c7f57571-0cd0-4cf4-baa6-0794e3bd6d1b","keyword":"长效性","originalKeyword":"长效性"}],"language":"zh","publisherId":"cldb200612016","title":"铝合金晶粒细化剂研究进展","volume":"20","year":"2006"},{"abstractinfo":"研究了K4169高温合金在各种工艺条件下及向熔体中加入复合细化剂时的晶粒组织.结果表明.降低浇注温度和加入复合细化剂可以明显细化冷凝后基体的晶粒和提高铸件断面等轴晶的比例在通常的浇注温度1400℃下加入复合细化剂.对合金熔体进行或不进行过热处理时.可使圆柱锭的晶粒分别细化至ASTM 1.7级和ASTM 3.2级:断面等轴晶的比例分别达96%和99%以上.当浇注温度为1420 ℃、加入复合细化剂并对合金熔体进行过热处理时,可使圆柱锭晶粒细化至ASTM M10.5级.断面等轴晶的比例达90%以上.提出了晶粒细化的机理并对晶粒细化后断面等轴晶比例增大的现象进行了分析.","authors":[{"authorName":"熊玉华","id":"c6da2790-3caf-4fa9-be7b-56d3f88635af","originalAuthorName":"熊玉华"},{"authorName":"李培杰","id":"a0bb345d-5a18-4c05-8410-196199c118d7","originalAuthorName":"李培杰"},{"authorName":"杨爱民","id":"64709b1f-f3ad-482a-9ffc-edb418c99ec9","originalAuthorName":"杨爱民"},{"authorName":"严卫东","id":"b517d170-3393-4aa6-8212-5a431b70031e","originalAuthorName":"严卫东"},{"authorName":"曾大本","id":"571a2be3-5435-4e27-8e51-6fa4c23eb07b","originalAuthorName":"曾大本"},{"authorName":"刘林","id":"de22d0e7-9f7a-47b3-991a-53b5ac16a32e","originalAuthorName":"刘林"}],"categoryName":"|","doi":"","fpage":"529","id":"83e2a92f-0b50-42e2-aa6a-dc7ac79b7c15","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4ab45550-4cb7-4a95-a6ab-aef6d67d707e","keyword":"Fe-Ni基高温合金","originalKeyword":"Fe-Ni基高温合金"},{"id":"8332432a-75fc-40c8-b78c-b16e6016fc2f","keyword":"null","originalKeyword":"null"},{"id":"eb3f4d1c-d4ca-4a20-b1d0-f5486df5781f","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2002_5_4","title":"铸造工艺参数和细化剂对K4169高温合金铸态组织的影响Ⅰ.晶粒组织及晶粒细化机理","volume":"38","year":"2002"},{"abstractinfo":"研究了K4169高温合金在各种工艺条件下及向熔体中加入复合细化剂时的晶粒组织.结果表明.降低浇注温度和加入复合细化剂可以明显细化冷凝后基体的晶粒和提高铸件断面等轴晶的比例在通常的浇注温度1400℃下加入复合细化剂.对合金熔体进行或不进行过热处理时.可使圆柱锭的晶粒分别细化至ASTM 1.7级和ASTM 3.2级:断面等轴晶的比例分别达96%和99%以上.当浇注温度为1420 ℃、加入复合细化剂并对合金熔体进行过热处理时,可使圆柱锭晶粒细化至ASTM M10.5级.断面等轴晶的比例达90%以上.提出了晶粒细化的机理并对晶粒细化后断面等轴晶比例增大的现象进行了分析.","authors":[{"authorName":"熊玉华","id":"caeff5a9-459a-4ad3-8b29-c0cffd2f15f0","originalAuthorName":"熊玉华"},{"authorName":"李培杰","id":"dd99437d-b301-43b8-8ecb-fd01b46ad4bd","originalAuthorName":"李培杰"},{"authorName":"杨爱民","id":"c4d65e4f-7cfd-40e5-839f-78afde82c36f","originalAuthorName":"杨爱民"},{"authorName":"严卫东","id":"b71dcfa5-03b5-43da-9c39-5037aad435ba","originalAuthorName":"严卫东"},{"authorName":"曾大本","id":"b9cf7bfc-ccf3-42e3-9815-2cbed7f81361","originalAuthorName":"曾大本"},{"authorName":"刘林","id":"3e15e70d-8900-462b-ab34-ec7f8e47d17b","originalAuthorName":"刘林"}],"doi":"10.3321/j.issn:0412-1961.2002.05.017","fpage":"529","id":"f2a0f46b-02f1-4c84-b574-f99f7391b121","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"c8f6d40a-1ab8-409e-969e-f15b17202627","keyword":"Fe-Ni基高温合金","originalKeyword":"Fe-Ni基高温合金"},{"id":"2a4a3b14-2139-425d-ac13-b82522de3eb5","keyword":"晶粒细化","originalKeyword":"晶粒细化"},{"id":"df22b471-421a-4cc1-b393-bf2d456b3ee5","keyword":"等轴晶比例","originalKeyword":"等轴晶比例"}],"language":"zh","publisherId":"jsxb200205017","title":"铸造工艺参数和细化剂对K4169高温合金铸态组织的影响Ⅰ.晶粒组织及晶粒细化机理","volume":"38","year":"2002"},{"abstractinfo":"纳米晶材料电沉积工艺是在传统电沉积工艺的基础上,通过控制适当的工艺条件,最终获得具有各种性能的纳米晶电沉积层的过程.研究表明,由电沉积工艺制备的纳米晶材料,晶粒细小且组织均匀,具有耐磨、耐蚀、耐高温氧化等特殊性能.本文分析了在电沉积过程中纳米晶形成的机理,探讨了工艺参数、复合电沉积和脉冲电沉积、有机添加剂以及采用其它工艺措施对晶粒细化过程的影响.介绍了电沉积纳米晶材料的各种性能及应用.","authors":[{"authorName":"朱荻","id":"559e6e70-e7e3-47ab-b271-594f6f6feb15","originalAuthorName":"朱荻"},{"authorName":"张文峰","id":"0c27d2fa-6273-4bba-b1b2-d0c7bb12f493","originalAuthorName":"张文峰"},{"authorName":"雷卫宁","id":"663b73ff-2f20-4d6e-b0c6-a60cfe76f6d5","originalAuthorName":"雷卫宁"}],"doi":"10.3969/j.issn.1000-985X.2004.05.016","fpage":"765","id":"fee2ea82-7965-4bac-916b-a8304a73d309","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"ab422186-825d-48e5-8a82-1c4e9f93072a","keyword":"纳米晶材料","originalKeyword":"纳米晶材料"},{"id":"e8b90d5f-4ea3-4139-8d64-a5c5f2811a46","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"36257f41-bb69-4095-b872-30b13e254c9b","keyword":"晶粒细化","originalKeyword":"晶粒细化"},{"id":"62e5b7a2-8dc6-412b-b9b0-6d80e3f773db","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"rgjtxb98200405016","title":"基于电沉积技术的纳米晶材料晶粒细化工艺研究","volume":"33","year":"2004"},{"abstractinfo":"从晶粒细化方法和晶粒细化机理两个方面总结了不含锆铸造镁合金和含锆铸造镁合金晶粒细化技术的研究进展,并指出新型高效晶粒细化剂的开发和晶粒细化机理的研究是镁合金晶粒细化技术研究的重点.","authors":[{"authorName":"刘子利","id":"af871777-09d7-4c5e-9c01-e090a096070e","originalAuthorName":"刘子利"},{"authorName":"沈以赴","id":"57041146-e6b5-4972-90c9-ea6bdd743691","originalAuthorName":"沈以赴"},{"authorName":"李子全","id":"f9946047-d141-4cde-9fbd-2ff8789b1f0b","originalAuthorName":"李子全"},{"authorName":"王蕾","id":"3e105faa-a7a6-4a63-8e72-86e9223f5534","originalAuthorName":"王蕾"}],"doi":"10.3969/j.issn.1673-2812.2004.01.038","fpage":"146","id":"4b511af8-da1d-4e7a-8eb2-2a443f4a58c6","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"699ff569-7196-48eb-a668-490dc5f42877","keyword":"铸造镁合金","originalKeyword":"铸造镁合金"},{"id":"97d702d0-1291-4024-be59-024f59ab2b50","keyword":"晶粒细化技术","originalKeyword":"晶粒细化技术"},{"id":"0bec4d9b-3ad2-4229-ad82-83dda71d6b47","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"clkxygc200401038","title":"铸造镁合金的晶粒细化技术","volume":"22","year":"2004"}],"totalpage":6070,"totalrecord":60693}