{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":4,"startPagecode":1},"records":[{"abstractinfo":"对BSTMUF601合金在不同温度和应力条件下进行了拉伸蠕变实验,获得了该合金的高温蠕变的变形规律,基于此提出了一种新的修正θ映射法蠕变本构模型,该模型考虑了蠕变3阶段的蠕变特点.模型预测结果与实验结果吻合较好,平均相对误差为1.86%,相对于没有考虑第2阶段的θ映射法模型和没有考虑第1阶段的修正θ映射法模型相对误差分别减少0.10%和6.02%,表明该模型具有较强的适用性,且不降低预测精度.对蠕变和蠕变断裂试样的位错组态和空洞演化进行了显微分析,结果表明,稳态蠕变阶段蠕变应力指数都接近5,合金主要通过位错攀移越过γ'相的方式变形,并未观察到层错和微孪晶存在于y'相或基体中,蠕变变形机制主要是位错攀移.空洞在晶界上形核,长大连接形成裂纹,在应力集中作用下,裂纹沿晶界扩展,最终导致断裂,蠕变断裂机制主要是晶界断裂.","authors":[{"authorName":"孙朝阳","id":"6a1fd234-e412-464d-bd74-fe407de24b14","originalAuthorName":"孙朝阳"},{"authorName":"石兵","id":"e48187a7-52d2-4dab-82db-6be5ec019380","originalAuthorName":"石兵"},{"authorName":"武传标","id":"5bdea62b-26af-442d-8525-ff589625d77a","originalAuthorName":"武传标"},{"authorName":"叶乃威","id":"3424d958-f6e0-45e8-a069-3931d693aa7d","originalAuthorName":"叶乃威"},{"authorName":"马天军","id":"5794ee3e-2a01-4fe8-b0f9-a45a3cce0aae","originalAuthorName":"马天军"},{"authorName":"徐文亮","id":"5862dcf6-6f5f-4075-a82c-3f826a7d4f5c","originalAuthorName":"徐文亮"},{"authorName":"","id":"549ff4fd-a21c-46fd-aab5-092a64efa584","originalAuthorName":"杨竞"}],"doi":"10.11900/0412.1961.2014.00293","fpage":"349","id":"4d8b2312-1c77-44d0-a4bf-acddfaac1ac9","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"2b3c2f9c-1c1f-41e3-a6ae-179ce47548fb","keyword":"BSTMUF601合金","originalKeyword":"BSTMUF601合金"},{"id":"0f82d7e1-845c-482f-83a2-afb9d66f1309","keyword":"蠕变变形","originalKeyword":"蠕变变形"},{"id":"a25bedf3-56a3-4831-880b-3a4e54f2065e","keyword":"稳态蠕变速率","originalKeyword":"稳态蠕变速率"},{"id":"81cbad7c-64a0-4c51-92ff-6445c0e3a3a0","keyword":"蠕变断裂","originalKeyword":"蠕变断裂"}],"language":"zh","publisherId":"jsxb201503011","title":"BSTMUF601合金的高温蠕变变形机制","volume":"51","year":"2015"},{"abstractinfo":"采用阴极等离子电解沉积在镍基合金上制备了Al2O3-YAG复合涂层.该涂层的外层具有多孔结构,与合金基体结合的内层为致密结构,涂层总厚度可达100 μm,涂层由Al2O3和YAG两相构成.在1100℃空气中循环氧化的结果表明:Al2O3-YAG复合涂层具有优异的抗高温氧化性能和抗剥落性能.这些特性可主要归因于,涂层中Al2O3相阻碍氧扩散的作用和涂层的多孔结构及复合结构的增韧作用.","authors":[{"authorName":"周帅","id":"2ade54b5-d3d8-49ae-ab2a-604659b951bc","originalAuthorName":"周帅"},{"authorName":"何业东","id":"a0945177-d1e5-4c33-b770-54ee3af7ba76","originalAuthorName":"何业东"},{"authorName":"王德仁","id":"c04c94c2-ca0b-4509-9bf3-2e00079f6be8","originalAuthorName":"王德仁"},{"authorName":"","id":"16272395-dfc3-4097-bf39-cc40210e0128","originalAuthorName":"杨竞"}],"doi":"","fpage":"171","id":"37d45e6e-4ec2-4e1e-bb63-60006f81947f","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"4c2709d9-a027-4fa3-95fc-6ababe6fd540","keyword":"阴极等离子电解","originalKeyword":"阴极等离子电解"},{"id":"abb13bf3-e8ed-4f21-81e4-a3595fd33f42","keyword":"Al2O3-YAG复合涂层","originalKeyword":"Al2O3-YAG复合涂层"},{"id":"a3bb38ff-0494-4cc8-8828-516f81203ae3","keyword":"高温氧化","originalKeyword":"高温氧化"}],"language":"zh","publisherId":"jsrclxb201312031","title":"阴极等离子电解沉积Al2O3-YAG复合涂层及其抗高温氧化性能","volume":"34","year":"2013"},{"abstractinfo":"采用滴液式等离子电解装置在铝合金表面直接镀镍.研究了等离子电解镀镍的工艺条件,镀层的结构、结合力和耐蚀性能.结果表明:提高镀液中的硫酸含量,可以减少镍镀层的钝化;采用高频脉冲电流,可以获得表面平整的、与铝合金基体呈冶金结合的镀镍层,其结合力达到140 N,是传统浸锌镀镍层的2倍多;镀层含有微量的氧和硫,可提高镀层的自腐蚀电位,使等离子电解镀镍层具有优异的抗蚀性能.","authors":[{"authorName":"陈乐","id":"26b5e249-86d9-48d5-9e03-f9f200afbe66","originalAuthorName":"陈乐"},{"authorName":"权成","id":"078beb14-f22c-4f1f-a4ee-65c33fc2e9b5","originalAuthorName":"权成"},{"authorName":"何业东","id":"338e4c00-45de-43a4-94f5-f5cc85dfcc28","originalAuthorName":"何业东"},{"authorName":"王德仁","id":"4d56f31b-7b37-4704-b0a2-7ad3f9469397","originalAuthorName":"王德仁"},{"authorName":"","id":"c98827e5-cb1d-4eea-802d-1c9571626d38","originalAuthorName":"杨竞"}],"doi":"","fpage":"181","id":"f5c5039c-4095-472d-9af6-b85f2c1ed916","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"cf7ec4b7-1cff-4dff-a436-776550b923f1","keyword":"等离子电解","originalKeyword":"等离子电解"},{"id":"33335d02-aada-4205-b31e-5daad22bd1df","keyword":"镀镍层","originalKeyword":"镀镍层"},{"id":"8fcef2d1-2fe4-4969-84a2-315fb5c8a3da","keyword":"铝合金","originalKeyword":"铝合金"}],"language":"zh","publisherId":"jsrclxb201311033","title":"铝合金表面等离子电解镀镍","volume":"34","year":"2013"},{"abstractinfo":"通过高温循环氧化实验,研究了3种镍基合金在1095和1150℃的高温抗氧化行为,并采用扫描电镜(SEM)和能谱分析(EDS)研究了氧化膜表面形貌、氧化膜厚度及成分.结果表明:BSTMUF601合金的抗氧化性能优于Inconel601合金和Incoloy800H合金,Incoloy800H合金抗氧化性能最差.1095℃下合金的氧化动力学曲线呈抛物线规律,1150℃下Incoloy800H合金抗氧化性显著降低,试样氧化极为严重,温度低于1150℃时合金均体现出良好的抗高温氧化能力.BSTMUF601和Inconel601合金氧化后表面生成一层致密的氧化膜,经分析主要是Cr和Al的氧化物,且氧化膜外层以Cr的氧化物为主,氧化膜厚度接近50 μm,Incoloy800H合金表面氧化层中以Fe的不同结构氧化产物为主.","authors":[{"authorName":"孙朝阳","id":"6fc5c777-bf68-425b-ae9e-fc7b1ac514a2","originalAuthorName":"孙朝阳"},{"authorName":"陈桂才","id":"34223b91-6178-4a6e-8518-74fe6f6d2b42","originalAuthorName":"陈桂才"},{"authorName":"武传标","id":"fc366b8c-dbda-42b8-9ad0-0a7b02fd5351","originalAuthorName":"武传标"},{"authorName":"徐文亮","id":"60499cf3-e888-404e-b63b-82c4cfa8bbba","originalAuthorName":"徐文亮"},{"authorName":"马天军","id":"54e27fa4-7d5a-4490-86ff-3e91322a92a4","originalAuthorName":"马天军"},{"authorName":"","id":"2fdad1e1-8b99-4c14-ba51-e7099f5458d0","originalAuthorName":"杨竞"}],"doi":"10.11903/1002.6495.2014.132","fpage":"345","id":"abeb3dcb-626f-429e-aaba-00630975113c","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"3b578125-00f7-4fbb-918f-49ce302c2089","keyword":"镍基合金","originalKeyword":"镍基合金"},{"id":"06ccc482-2230-4cdc-9bd9-d62cd715299d","keyword":"高温氧化","originalKeyword":"高温氧化"},{"id":"291b28f3-26ac-4701-a2de-b92d4d257b0f","keyword":"BSTMUF601合金","originalKeyword":"BSTMUF601合金"},{"id":"1c0685c2-d93e-4634-8299-3c05b73ce911","keyword":"氧化动力学","originalKeyword":"氧化动力学"}],"language":"zh","publisherId":"fskxyfhjs201404010","title":"典型耐热镍基合金抗高温氧化行为研究","volume":"26","year":"2014"},{"abstractinfo":"基于位错密度及孪晶体积分数的演化,建立了Fe-22Mn-0.6C孪晶诱导塑性(TWIP)钢滑移和孪生的塑性物理本构模型,该模型考虑了孪晶内的滑移对整体塑性变形的贡献及孪晶区和基体区Taylor因子的差异,采用基体滑移、孪晶区孪生和滑移的加权求和描述微区塑性变形.考虑应变速率对热激活应力的影响,进一步建立了应变速率与屈服应力之间的关系.采用Euler法对该模型进行数值计算,将计算结果与实验结果进行对比,其平均相对误差值只有0.84%,相对于不考虑孪晶区滑移的模型和考虑孪晶区滑移但未考虑Taylor因子差异的模型,平均误差分别降低11%和2.9%.分析了孪晶与滑移机制的相互作用及对宏观变形的影响,结果表明,孪生速率与滑移速率之间负相关,孪生速率增大滑移速率减小;孪生趋于饱和时,孪生速率降低而滑移速率迅速增加;应变速率增加屈服应力增大,而对应变硬化率无显著影响.","authors":[{"authorName":"孙朝阳","id":"61ead337-afba-4ba8-b3b6-22e7a238ffc4","originalAuthorName":"孙朝阳"},{"authorName":"黄杰","id":"6307db88-2107-4afc-988e-6875325fa6d4","originalAuthorName":"黄杰"},{"authorName":"郭宁","id":"18cdda92-8948-4195-a836-b0f42bd53bd6","originalAuthorName":"郭宁"},{"authorName":"","id":"2df37c04-c333-4e93-80fa-446c392d86a8","originalAuthorName":"杨竞"}],"doi":"10.11900/0412.1961.2014.00079","fpage":"1115","id":"5ce02150-c823-43dc-9ffd-6ceaacd215cd","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f8f31d9b-622b-4f39-9f88-e8fd4a52560f","keyword":"TWIP钢","originalKeyword":"TWIP钢"},{"id":"ac2092a1-72ab-44c3-8d2a-d109750e20ca","keyword":"位错密度","originalKeyword":"位错密度"},{"id":"7259e2e8-40d3-4814-9438-0bfaef3bde35","keyword":"孪晶诱导塑性","originalKeyword":"孪晶诱导塑性"},{"id":"4da19123-0cab-4973-950b-b5f53542a7be","keyword":"本构模型","originalKeyword":"本构模型"},{"id":"3c0c78e1-3e7a-413d-acd1-6d7d71a34afd","keyword":"应变速率","originalKeyword":"应变速率"}],"language":"zh","publisherId":"jsxb201409013","title":"基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究","volume":"50","year":"2014"},{"abstractinfo":"基于己建立的单晶体塑性模型,建立了耦合孪生的孪生诱发塑性(TWIP)钢多晶体塑性模型,该模型采用有限元多晶均匀化处理相邻晶粒间的几何协调和应力平衡条件,获得了单晶体与多晶体状态变量的关系,开发了基于ABAQUS/UMAT的计算程序.采用EBSD研究了TWIP钢拉伸应变分别为0.27和0.6时的织构变化,并对模型进行了应力应变及织构演化的验证.用该本构模型分别建立了拉伸、压缩和扭转3种简单加载条件下的有限元模型,分析了不同变形条件下的宏观力学响应及织构演化规律.结果表明:拉伸变形过程中,应变硬化现象和织构密度水平随应变增加而增强;在压缩过程中,织构类型随应变增加而发生变化,但是织构密度水平基本不变;而在扭转过程中,当扭转应变较小时,基本无织构形成,随着应变增加,织构逐渐显现出来,这是因为变形较小时,圆柱沿径向方向内部变形量较小,故织构不明显.","authors":[{"authorName":"孙朝阳","id":"613d04cc-dd52-4c2c-9cbb-8791cbdf2bc1","originalAuthorName":"孙朝阳"},{"authorName":"郭祥如","id":"01847fd8-3c74-4f1a-8070-8b24340a314d","originalAuthorName":"郭祥如"},{"authorName":"郭宁","id":"0efe9691-cf34-4c71-878b-de43755cd5c3","originalAuthorName":"郭宁"},{"authorName":"","id":"b44cbc9b-946d-4f4e-9098-4c4a74f8bfc5","originalAuthorName":"杨竞"},{"authorName":"黄杰","id":"ac33aeb7-1980-4ffc-a823-588557b2c9f5","originalAuthorName":"黄杰"}],"doi":"10.11900/0412.1961.2015.00156","fpage":"1507","id":"8f8b6e55-249e-4dad-baf0-e810184a27f8","issue":"12","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7350feb6-8dee-4497-ad41-0ad04fb979f6","keyword":"TWIP钢","originalKeyword":"TWIP钢"},{"id":"0d6af053-75aa-4fd5-b9f2-8887fbd5d89b","keyword":"晶体塑性","originalKeyword":"晶体塑性"},{"id":"82fa8a3d-2046-4504-b69a-d95a7b8d7e37","keyword":"多晶均匀化","originalKeyword":"多晶均匀化"},{"id":"6f628eb2-1147-4896-9033-f7c387a5f93e","keyword":"织构预测","originalKeyword":"织构预测"},{"id":"378593c3-7f95-49bf-8135-7527180358b8","keyword":"塑性变形","originalKeyword":"塑性变形"}],"language":"zh","publisherId":"jsxb201512011","title":"耦合孪生的TWIP钢多晶体塑性变形行为研究","volume":"51","year":"2015"},{"abstractinfo":"基于晶体塑性理论,建立了滑移和孪生机制耦合的孪生诱导塑性(TWIP)钢单晶晶体塑性本构模型,通过引入孪晶体积分数及其饱和值,分别考虑了孪生对硬化及滑移的影响,对该本构模型进行数值实现.并通过ABAQUS/UMAT平台上的二次开发,将其应用于TWIP钢单晶典型取向单向加载条件下的力学行为模拟.分析了单晶不同取向下塑性变形的微观机理和滑移系、孪生系的启动状态及其对宏观塑性的影响,尤其是模拟得到黄Cu取向和S取向加载过程的应力突变,再现了Cu单晶实验中的应力陡降现象.结果表明,孪晶体积分数较小时,对应变硬化影响较小;随着孪晶体积分数的增加,对应变硬化的影响逐渐明显;当孪晶体积达到一定量时,孪晶体积达到饱和,孪生增量为0,晶体滑移转向,新的滑移系启动,应力突降.","authors":[{"authorName":"孙朝阳","id":"5c5d2ac3-fc6e-4f54-a6a7-3d3f8026a256","originalAuthorName":"孙朝阳"},{"authorName":"郭祥如","id":"d51cb3f3-7b2b-4122-bbbe-00aa7304902b","originalAuthorName":"郭祥如"},{"authorName":"黄杰","id":"5d52fd0f-684b-4385-b16c-3f89a0ac1669","originalAuthorName":"黄杰"},{"authorName":"郭宁","id":"e6de56ff-29c6-4067-9675-5b4f2928cc8f","originalAuthorName":"郭宁"},{"authorName":"王善伟","id":"f043cc00-e748-49c1-9631-ef2e49e6218e","originalAuthorName":"王善伟"},{"authorName":"","id":"aca268c8-9231-45cd-b0d3-dcb31f2af895","originalAuthorName":"杨竞"}],"doi":"10.11900/0412.1961.2014.00298","fpage":"357","id":"b1b52be7-0740-46d6-8916-6924deec4acb","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"95d59324-9e76-44ca-9657-ff05d48b6180","keyword":"TWIP钢","originalKeyword":"TWIP钢"},{"id":"ec36c3d9-3a71-4df5-ae54-1af1da216137","keyword":"晶体塑性","originalKeyword":"晶体塑性"},{"id":"e7432fbb-aa3f-457d-ae75-273d80d854d6","keyword":"滑移","originalKeyword":"滑移"},{"id":"11899e0e-a34e-4edd-a97a-6ed8e4458d0f","keyword":"孪生","originalKeyword":"孪生"},{"id":"e3353914-c987-47b0-95d3-f4310bb312b5","keyword":"本构模型","originalKeyword":"本构模型"}],"language":"zh","publisherId":"jsxb201503012","title":"耦合孪生的TWIP钢单晶体塑性变形行为模拟研究","volume":"51","year":"2015"},{"abstractinfo":"通过Gleeble热模拟实验机在1000~1200℃,应变速率为0.01~10 s-1条件下的近等温热模拟压缩实验,建立了316LN双曲正弦的流动应力预测模型及其热加工图.该流动应力预测模型考虑了实验过程中塑性变形和摩擦引起的温升,对流动应力进行了修正,考虑应变对流动应力预测模型参数的影响,获得了统一流动应力预测模型,模型预测值与实验值的相关系数为0.992,平均相对误差为4.43%;热加工图基于Prasad动态材料模型分别获得了不同应变速率、温度条件下的能量耗散率和失稳系数;分析了应变量、温度和应变速率对于能量耗散率和失稳系数的影响.结果表明:实验条件下最大能量耗散率值为0.38,且高应变速率下失稳,并通过显微组织分析对热加工图进行了验证.","authors":[{"authorName":"孙朝阳","id":"feebe361-9acb-429d-8841-6a7cd3034b88","originalAuthorName":"孙朝阳"},{"authorName":"李亚民","id":"d6f74f54-d41f-41b7-93e4-93e952542bdd","originalAuthorName":"李亚民"},{"authorName":"祥雨","id":"eeeea367-3253-49ee-8a07-d461302ee5d0","originalAuthorName":"祥雨"},{"authorName":"","id":"8dcbcf5d-e6ee-41e8-b0a7-c929485699ba","originalAuthorName":"杨竞"}],"doi":"","fpage":"688","id":"6030ed8c-9f72-4fa1-a20a-f9861c28d3f5","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4fcd4998-8301-41c9-9352-cb5281708df9","keyword":"316LN不锈钢","originalKeyword":"316LN不锈钢"},{"id":"1162f9c2-b576-4af1-9ea3-dc84f81b22d1","keyword":"本构模型","originalKeyword":"本构模型"},{"id":"2864ed3c-e5d2-4c87-bd32-ccd127b6e8d0","keyword":"热加工图","originalKeyword":"热加工图"},{"id":"9e5632c5-77e4-492c-b318-edf14e56397a","keyword":"热变形行为","originalKeyword":"热变形行为"}],"language":"zh","publisherId":"xyjsclygc201603028","title":"316LN高温热变形行为与热加工图研究","volume":"45","year":"2016"},{"abstractinfo":"采用Woods-Saxon形成的密度函数,按照立铭方法以及稍微修改的方法进行估算都得出,紧接126的幻数应该接近于184.","authors":[{"authorName":"李先卉","id":"de0a8216-5ace-4a39-a9c2-dc0e4635868d","originalAuthorName":"李先卉"},{"authorName":"周治宁","id":"fb0bee5a-b978-479d-a348-7cfeb81683ff","originalAuthorName":"周治宁"},{"authorName":"钟毓澍","id":"7e1c646a-9dd6-4099-a1dd-48a38d24785c","originalAuthorName":"钟毓澍"},{"authorName":"泽森","id":"dac8f638-c051-480c-899f-55daa616b078","originalAuthorName":"杨泽森"}],"doi":"10.3969/j.issn.1007-4627.2000.01.009","fpage":"39","id":"24ab9145-669e-473f-940c-46aafa41541e","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"a56c609f-1561-4216-adb0-fc937f323b42","keyword":"超重核幻数","originalKeyword":"超重核幻数"},{"id":"bc154b1b-0f42-4d6f-9e65-64cf1cf70b5f","keyword":"立铭方法","originalKeyword":"杨立铭方法"},{"id":"913e281b-2cf2-4469-99de-7758f327a0c2","keyword":"Thomas-Fermi近似","originalKeyword":"Thomas-Fermi近似"}],"language":"zh","publisherId":"yzhwlpl200001009","title":"用立铭方法估算大于126的幻数","volume":"17","year":"2000"},{"abstractinfo":"使用磁控溅射法制备了不同调制波长的Ni/Al多层膜,利用X射线衍射(XRD)和高分辨显微技术(HRTEM)对薄膜进行了微结构表征,采用连续刚度法(CSM)研究了不同压入深度下多层膜的硬度。结果表明,随调制波长减小,薄膜呈纳米晶结构特征且存在超硬效应。调制波长L大于30 nm时,纳米压入硬度随压入深度的增加而升高;L小于30 nm时最大压入深度的硬度测量值反而最小。同时发现压入深度较小时硬度相对大小对调制波长不敏感。结合微结构表征,从晶界和膜界的比变形角度进行了分析讨论。","authors":[{"authorName":"刘明霞","id":"23042614-d1fd-4e04-b31c-1ae2af417abd","originalAuthorName":"刘明霞"},{"authorName":"马飞","id":"112fb00b-55db-48f7-9512-0a9f8baf7b9b","originalAuthorName":"马飞"},{"authorName":"黄友兰","id":"5bb53e1a-9861-4972-9bd8-8834ce9c589b","originalAuthorName":"黄友兰"},{"authorName":"黄平","id":"308d8c02-c8f6-4d57-ad4c-9abe73d7b261","originalAuthorName":"黄平"},{"authorName":"余花娃","id":"e898dd0d-b374-4336-a274-43a2a67254c8","originalAuthorName":"余花娃"},{"authorName":"张建民","id":"061dd032-70cb-4da5-ae2e-58ff3aaae8e5","originalAuthorName":"张建民"},{"authorName":"徐可为","id":"a35c18e8-5baa-410b-9a7f-c18eacf01eec","originalAuthorName":"徐可为"}],"categoryName":"|","doi":"","fpage":"603","id":"069aad41-10d7-4b52-8411-ec8cfff22a7a","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"ae2fcb7b-ab7b-4543-a2ae-19341c3187d4","keyword":"多层膜","originalKeyword":"多层膜"},{"id":"09efbfbe-7234-4669-b2a5-bccea5c580e5","keyword":"hardness","originalKeyword":"hardness"},{"id":"b688defa-216d-40be-87ec-6be8968077a8","keyword":"loading depth","originalKeyword":"loading depth"},{"id":"735b5e64-5679-4b73-9225-0eb35019f0c2","keyword":"modulated period","originalKeyword":"modulated period"},{"id":"180c8c25-0c4d-41f0-b8f3-e35d9f282beb","keyword":"grain boundary","originalKeyword":"grain boundary"}],"language":"zh","publisherId":"0412-1961_2007_6_1","title":"多层膜晶界和膜界间比变形及其对硬度测量的影响","volume":"43","year":"2007"}],"totalpage":4,"totalrecord":40}