{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"实验制备了不同纤维厚度和体积分数的压电纤维复合物,并在0.1Hz的激励电压下测试了压电纤维复合物的自由应变性能和驱动性能,研究复合物典型结构参数对其性能的影响.实验发现,随着压电纤维厚度增加,复合物自由应变和顶端位移下降,1000 V激励电压下,纤维厚度为200μm样品纵向自由应变为665με,驱动Mylar膜产生的顶端位移为1.9 mm,而纤维厚度为300 μm和400 μm样品的纵向自由应变仅为纤维厚度为200 μm样品的23.2%和11.7%,顶端位移为纤维厚度为200 μm样品的45.8%和19.0%.压电纤维复合物具有驱动正交异性,横向自由应变、纵向自由应变以及横向效应系数随着纤维体积分数的降低而减小,纤维体积分数为74%的复合物其横向自由应变和纵向自由应变分别为体积分数为59%样品的2.04倍和1.72倍,横向效应系数也从0.519减小到0.451.","authors":[{"authorName":"陈子琪","id":"c634e11b-2d10-496a-b24c-b49349458db1","originalAuthorName":"陈子琪"},{"authorName":"朱松","id":"465103be-4f40-478d-8b28-c1d7bab9218b","originalAuthorName":"朱松"},{"authorName":"林秀娟","id":"2344dd6c-df2b-4cd4-bf73-40a4e5596658","originalAuthorName":"林秀娟"},{"authorName":"熊威","id":"4686ce06-ffcf-4ccc-9005-340d3c08d467","originalAuthorName":"熊威"},{"authorName":"周科朝","id":"b827b28c-59a5-4f33-8b1c-b67e348a4cb7","originalAuthorName":"周科朝"},{"authorName":"张斗","id":"1f1f8a37-8daf-43b6-8fe6-3bf07808fdb6","originalAuthorName":"张斗"}],"doi":"10.15541/jim20140565","fpage":"571","id":"2512b788-ab96-4907-a77d-7123e3c899cf","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"727f9062-9038-476b-9bd5-04b224d7d40b","keyword":"压电纤维复合物","originalKeyword":"压电纤维复合物"},{"id":"a5d6afeb-bb30-4101-a8b0-3e295f748102","keyword":"自由应变","originalKeyword":"自由应变"},{"id":"bb500222-a48f-40fb-9800-b69a554a3a47","keyword":"顶端位移","originalKeyword":"顶端位移"},{"id":"280bca67-1d36-4f4d-8636-403124b5c60d","keyword":"正交异性","originalKeyword":"正交异性"}],"language":"zh","publisherId":"wjclxb201506002","title":"纤维厚度和体积分数对压电纤维复合物应变性能的影响","volume":"30","year":"2015"},{"abstractinfo":"本文依据板料异性性质的正交性,以几种符合正交特性的函数对一些材料的试验数据进行了拟合和对比,并与现有的异性模型进行了比较。结果表明,以形式为A=A(?)_p+A_2cos2_α+A_4cos4_α的简单函数描述板料的单向拉伸性能的异性情况,是足够准确的。","authors":[{"authorName":"周维贤","id":"6b46b63a-dfdc-4478-8c4a-925bd13ea680","originalAuthorName":"周维贤"}],"categoryName":"|","doi":"","fpage":"20","id":"48fb5855-c05b-4546-888f-4b66dfebb5ea","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[],"language":"zh","publisherId":"1005-3093_1988_6_4","title":"正交异性板单拉性能异性数模","volume":"2","year":"1988"},{"abstractinfo":"讨论了小孔法测量正交各向异性材料残余应力.以正交各向异性无限大板孔边应力场解析解为基础,导出了释放应变矩阵计算表达式,并用一个算例验证了该计算式的正确性.","authors":[{"authorName":"朱甫金","id":"71c47793-0694-4595-a10c-ec800d7d812b","originalAuthorName":"朱甫金"},{"authorName":"陶宝祺","id":"a655627d-51fa-4447-b2b2-a1707aa668a8","originalAuthorName":"陶宝祺"}],"doi":"10.3321/j.issn:1000-3851.1998.02.018","fpage":"0","id":"6656eb82-c629-49f4-bb44-5d25aee5cbda","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"45f6b24a-279c-4add-a23c-9de2562d5f1d","keyword":"小孔法","originalKeyword":"小孔法"},{"id":"fba5444b-de73-4c08-81fd-1d889c68bd22","keyword":"残余应力","originalKeyword":"残余应力"},{"id":"b63c0866-0484-473d-bf60-7945f308a333","keyword":"正交各向异性","originalKeyword":"正交各向异性"},{"id":"2c919bec-714f-48f5-a564-028f7fc099ce","keyword":"释放应变矩阵","originalKeyword":"释放应变矩阵"}],"language":"zh","publisherId":"fhclxb199802018","title":"小孔法测量正交各向异性材料残余应力","volume":"15","year":"1998"},{"abstractinfo":"研究了具有压电正交异性特征的片状压电复合材料及其正交异性压电传感元件、驱动元件的构造机理、性能.正交异性压电复合材料在相互垂直的两主方向上呈现出明显的压电特性差异,作为传感元件它能够有效地分解构件中的应力、应变分量,对特定方向上的应力波反应灵敏.作为驱动片,片状正交异性压电复合材料在相互垂直的两主方向袁现出相反的变形,该特性符合一般工程材料的变形规律.片状正交异性压电复合材料所具有的上述优越特性可使得它们在自诊断、自适应智能结构中发挥更加重要和广泛的作用. ","authors":[{"authorName":"骆英","id":"82a9a4d8-cc6b-428d-8a09-febf46b2086f","originalAuthorName":"骆英"},{"authorName":"陶宝祺","id":"4fd5756f-8aca-4ac6-baec-b6f096001fb5","originalAuthorName":"陶宝祺"}],"doi":"","fpage":"59","id":"d9bd3423-d598-44e2-a55d-427cdf865b9f","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"505e8e11-e5aa-4a46-b78b-d335c953bd77","keyword":"片状压电复合材料","originalKeyword":"片状压电复合材料"},{"id":"25cab525-0189-427e-bbfc-3d88e1378ef2","keyword":"压电正交异性特性","originalKeyword":"压电正交异性特性"},{"id":"3083f4b6-ee81-422f-8270-c24c6dde4577","keyword":"传感元件","originalKeyword":"传感元件"},{"id":"d713289f-0414-4911-9f76-e778374da0eb","keyword":"驱动元件","originalKeyword":"驱动元件"}],"language":"zh","publisherId":"cldb200103022","title":"片状正交异性压电复合材料的研究","volume":"15","year":"2001"},{"abstractinfo":"本文利用伽辽金法对局部损伤正交各向异性矩形薄板的屈曲问题进行了分析,得到了损伤薄板屈曲临界载荷的近似计算方法.数值分析结果表明,局部损伤对正交各向异性矩形薄板的屈曲临界载荷有较为明显的影响,在进行玻璃钢/复合材料薄板结构稳定性设计与校核时,必须予以考虑.","authors":[{"authorName":"李瑶","id":"1de680b3-a1c9-4fef-bb22-11081a6e387d","originalAuthorName":"李瑶"}],"doi":"10.3969/j.issn.1003-0999.2001.05.001","fpage":"3","id":"d347764a-18a5-49b0-89b4-632919dee74c","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"d9a8d7fa-e535-4b3a-9c36-08baf38c1d53","keyword":"正交各向异性矩形薄板","originalKeyword":"正交各向异性矩形薄板"},{"id":"574b7eec-e51f-4d2c-8150-26e0d73d9b24","keyword":"局部损伤","originalKeyword":"局部损伤"},{"id":"31c75c88-bd65-4ef6-a11f-183aac740eda","keyword":"屈曲","originalKeyword":"屈曲"},{"id":"92224611-6dad-4c02-9237-66d36547aa40","keyword":"伽辽金法","originalKeyword":"伽辽金法"}],"language":"zh","publisherId":"blgfhcl200105001","title":"局部损伤正交各向异性矩形薄板的屈曲","volume":"","year":"2001"},{"abstractinfo":"以矩形蜂窝为例,介绍了正交各向异性蜂窝填充的夹层蜂窝结构散热性能和散热一承载性能优化设计,给出了正交各向异性蜂窝相关系数的推导过程.从实际应用出发,针对常规以性能乘积形式构造的散热一承载性能指标对散热性能侧重程度的不足,给出了基于2种双层规划模型的非确定性设计方法,得到了旨在强调散热性能设计意图的散热-承载多目标优化问题的有效解集.这种方法对结构敏感参数较多的正交各向异性蜂窝填充结构的多功能优化设计非常有效.最后讨论了不同尺寸效应下的蜂窝最优结构参数.","authors":[{"authorName":"王博","id":"2e013b5a-d9b8-4e89-b360-0dcf8e98a31f","originalAuthorName":"王博"}],"doi":"10.3321/j.issn:1000-3851.2008.03.034","fpage":"202","id":"c862c630-f3f9-4d5b-a33a-eb50ee572b70","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"6f20ef44-2e20-4f30-8ef0-fa49a9ce750f","keyword":"多功能设计","originalKeyword":"多功能设计"},{"id":"9f19d69f-da21-497d-89f2-d6c18c957586","keyword":"结构优化","originalKeyword":"结构优化"},{"id":"cac15ab6-33fd-4b46-b50d-624174b63bbb","keyword":"蜂窝材料","originalKeyword":"蜂窝材料"},{"id":"5a994dad-cd06-4b50-8059-e11e5a915be2","keyword":"正交各向异性","originalKeyword":"正交各向异性"},{"id":"ce3e149d-d03c-49b5-bb1d-65c6b5b3a47c","keyword":"散热性能","originalKeyword":"散热性能"}],"language":"zh","publisherId":"fhclxb200803034","title":"正交各向异性蜂窝材料多功能优化设计","volume":"25","year":"2008"},{"abstractinfo":"采用Reddy高阶剪切理论对正交各向异性蜂窝夹层板进行了分层研究,推导出蜂窝夹层板的动力学基本方程,并且对正交各向异性单向蜂窝夹层板的自由振动进行了深入的研究,给出了对边简支时的频率方程及振型函数,同时分析了夹芯厚度及厚跨比对其频率的影响,并与低阶剪切理论作了比较,结果证明高阶理论较好.","authors":[{"authorName":"徐胜今","id":"01681c9f-ddbd-4fe8-9090-cc06d2ebb756","originalAuthorName":"徐胜今"},{"authorName":"宋宇","id":"3b46f353-3582-4e2d-9a65-26406b33ffe1","originalAuthorName":"宋宇"},{"authorName":"王本利","id":"df5a3f7c-5ce6-4ec5-b870-78d3ca425ee9","originalAuthorName":"王本利"},{"authorName":"马兴瑞","id":"f3a717cd-867f-4f39-8e91-e02aefb9f2bc","originalAuthorName":"马兴瑞"}],"doi":"10.3321/j.issn:1000-3851.1998.04.015","fpage":"74","id":"f83bdad9-a9b3-4ba3-b113-1963b06f4732","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"6c7c1f66-347c-4ab6-9419-7fe45637c3aa","keyword":"正交各向异性","originalKeyword":"正交各向异性"},{"id":"78bfb66e-764a-4a7c-bf61-147059c4c852","keyword":"蜂窝夹层板","originalKeyword":"蜂窝夹层板"},{"id":"5a67eac6-43db-4d16-9381-87ddcbc302ab","keyword":"动力学特性","originalKeyword":"动力学特性"}],"language":"zh","publisherId":"fhclxb199804015","title":"正交异性蜂窝夹层板的动力学分析","volume":"15","year":"1998"},{"abstractinfo":"给出了二维正交各向异性结构弹塑性问题的边界元分析方法,包括相应边界积分方程、内点应力公式、边界元求解格式以及弹塑性应力计算方法.在弹塑性分析中,引入了Hill-Tsai屈服准则,采用初应力法和切向预测径向返回法确定实际应力状态.通过具体算例分析了二维正交各向异性结构的弹塑性应力和塑性区分布情况,部分数值结果与已有结果进行了比较,两者基本吻合.结果表明,本文中给出的边界元法可以有效地用于求解二维正交各向异性结构的弹塑性问题.","authors":[{"authorName":"孙秀山","id":"8e130323-8392-4bdd-a4c5-0de60dc39d66","originalAuthorName":"孙秀山"},{"authorName":"黄立新","id":"38cda516-d390-41eb-b22f-451708d50dd8","originalAuthorName":"黄立新"},{"authorName":"刘应华","id":"90fe6e7f-158c-4d91-82d4-48a1ab3b8adf","originalAuthorName":"刘应华"},{"authorName":"岑章志","id":"b18d4e91-6ff3-4dac-a1b1-1222cad28cc3","originalAuthorName":"岑章志"},{"authorName":"方东平","id":"120084f4-0c18-4e96-9da7-c210a54f53fd","originalAuthorName":"方东平"}],"doi":"10.3321/j.issn:1000-3851.2005.03.030","fpage":"156","id":"410243f8-8e33-4f9a-bbfb-4707601a9d13","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"9e0fb9b1-f9aa-466e-a4a0-d795fbe75356","keyword":"二维正交各向异性结构","originalKeyword":"二维正交各向异性结构"},{"id":"9dedb0b5-e0ae-4ebc-b606-856e4a9e51b0","keyword":"弹塑性问题","originalKeyword":"弹塑性问题"},{"id":"136a3f91-e703-4622-bd9c-74024a6f7a18","keyword":"边界元法","originalKeyword":"边界元法"}],"language":"zh","publisherId":"fhclxb200503030","title":"二维正交各向异性结构弹塑性问题的边界元分析","volume":"22","year":"2005"},{"abstractinfo":"通过引入适当的Westergaard应力函数,采用复变函数方法和待定系数法对含周期性裂纹正交各向异性纤维增强复合材料板的Ⅰ型、Ⅱ型问题中裂纹尖端附近的应力场进行了力学分析.在远处对称载荷与斜对称载荷作用下,先给出Ⅰ型、Ⅱ型问题在裂纹尖端处的应力强度因子,然后导出用应力强度因子表示的Ⅰ型、Ⅱ型裂纹问题应力场的解析表达式.此外,应力场大小与材料常数有关,这是正交各向异性材料不同于各向同性材料的特征.由于裂纹的周期分布,应力强度因子的大小取决于形状因子.结果表明,形状因子随着裂纹长度的增加而增大,随着裂纹间距的增大而逐渐下降,当裂纹间距趋于无穷大时,退化为含单个中心裂纹正交各向异性纤维增强复合材料板的结果.","authors":[{"authorName":"郭俊宏","id":"5073db87-a389-4f06-b177-98da62da47bf","originalAuthorName":"郭俊宏"},{"authorName":"卢子兴","id":"15718b3f-8e1a-433e-8e9f-a68f26ce3bd2","originalAuthorName":"卢子兴"}],"doi":"","fpage":"162","id":"4944e44e-05d3-4232-9aee-f300ef874647","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"6ae6e6f8-e1d5-4cd8-83d1-31e11c737a96","keyword":"正交各向异性板","originalKeyword":"正交各向异性板"},{"id":"470b69fd-02b2-4637-bb27-9d995572e826","keyword":"周期性裂纹","originalKeyword":"周期性裂纹"},{"id":"2f443615-e00b-4dbc-aa0f-ce0b74e9bbda","keyword":"Westergaard应力函数","originalKeyword":"Westergaard应力函数"},{"id":"4ea1fe8f-6b9a-4d72-9d38-02f0dac40c59","keyword":"应力强度因子","originalKeyword":"应力强度因子"},{"id":"6e813f8d-ecaa-4a1d-bf44-a02a1ca8809e","keyword":"应力场","originalKeyword":"应力场"}],"language":"zh","publisherId":"fhclxb201001028","title":"含周期性裂纹正交各向异性板平面问题的应力场分析","volume":"27","year":"2010"},{"abstractinfo":"本文基于低阶剪切理论,提出了正交各向异性蜂窝夹层板的一种等效分析方法,得到等效板的工程常数和密度,解决了国际上公认的大型有限元通用程序如NASTRAN等不能直接计算蜂窝夹层板动、静力学问题的难题,理论验证结果表明,等效方法具有高精度的近似.","authors":[{"authorName":"徐胜今","id":"4c8ba389-b698-4009-95f2-9cc5d77b6a81","originalAuthorName":"徐胜今"},{"authorName":"孔宪仁","id":"de04f4ad-2907-45ab-b205-7d13414e6944","originalAuthorName":"孔宪仁"},{"authorName":"王本利","id":"b4c9c24a-1456-4147-8624-4823300adcdd","originalAuthorName":"王本利"},{"authorName":"马兴瑞","id":"27df272c-dd26-4865-b7b9-a7e7f30ea5aa","originalAuthorName":"马兴瑞"},{"authorName":"张晓超","id":"6843c04b-ca6d-464e-be8f-f34822c9c31f","originalAuthorName":"张晓超"}],"doi":"10.3321/j.issn:1000-3851.2000.03.021","fpage":"92","id":"578015aa-1aca-458a-a56b-0f91ba359c0a","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"884e1ae7-74ee-4999-a59c-9b08cc0f471c","keyword":"正交各向异性","originalKeyword":"正交各向异性"},{"id":"ea61ce95-e168-4510-ae8a-f04ec5476398","keyword":"蜂窝夹层板","originalKeyword":"蜂窝夹层板"},{"id":"642ee96d-d991-4d4d-bbbf-e1a47989fe87","keyword":"等效分析","originalKeyword":"等效分析"},{"id":"c9b3de40-6501-442f-944c-f5bed51a78fc","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"fhclxb200003021","title":"正交异性蜂窝夹层板动、静力学问题的等效分析方法","volume":"17","year":"2000"}],"totalpage":549,"totalrecord":5482}