{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了提高奥氏体不锈钢的表面硬度并保持其良好的耐蚀性,采用自主开发的低温渗碳工艺对AISI316奥氏体不锈钢进行渗碳处理.运用金相显微镜和显微硬度计表征了渗碳强化层组织,通过电化学试验检测了渗碳强化层的耐蚀性.结果表明:渗碳温度越高,渗碳强化层表面硬度越高,耐蚀性越差;经过470℃低温渗碳处理的AISI316奥氏体不锈钢表面硬度从原来的300 HV0.25N增加到800~1 000 HV0.25N,有效硬化层达36.1 μm,而其耐蚀性保持不变.","authors":[{"authorName":"朱云峰","id":"07222284-97e0-4e37-8d6f-8615ae442939","originalAuthorName":"朱云峰"},{"authorName":"潘邻","id":"fc7edf2d-2277-4eb7-83b4-cabb34fe4626","originalAuthorName":"潘邻"},{"authorName":"张良界","id":"6ebac1b4-7741-44c3-86fc-4109a168bbc0","originalAuthorName":"张良界"},{"authorName":"李朋","id":"226aef28-7bc1-425f-953e-11b184e5eb88","originalAuthorName":"李朋"},{"authorName":"马飞","id":"44ba5d3e-7da9-45f6-877b-2d5e359ca0a7","originalAuthorName":"马飞"},{"authorName":"杨闽红","id":"d20f5dd2-d5af-4dfd-ad61-83cd004da010","originalAuthorName":"杨闽红"},{"authorName":"童幸生","id":"8f387eb2-dcfd-4e39-b64f-078b8a0ee0a9","originalAuthorName":"童幸生"},{"authorName":"王成虎","id":"6193761c-6e40-47f1-86f1-9842a2be80fb","originalAuthorName":"王成虎"}],"doi":"","fpage":"27","id":"0335345d-743c-456e-8ac3-a4f0fdede37d","issue":"5","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"9948e9ae-df0a-4e00-8519-b8c8cb45c917","keyword":"低温渗碳","originalKeyword":"低温渗碳"},{"id":"42b3f185-abf4-4478-9816-4259ce91894b","keyword":"AISI316奥氏体不锈钢","originalKeyword":"AISI316奥氏体不锈钢"},{"id":"e57eccf8-8151-4b98-a4d8-acee91210cd1","keyword":"渗碳强化层","originalKeyword":"渗碳强化层"},{"id":"ad5211e2-c78d-4e08-9e71-724aeb7b3a5f","keyword":"表面硬度","originalKeyword":"表面硬度"},{"id":"0d4f00cf-b97c-4345-b3f6-b8302325b1f7","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh201305009","title":"AISI316奥氏体不锈钢低温渗碳层的组织及耐蚀性","volume":"46","year":"2013"},{"abstractinfo":"  利用扫描电镜、电子探针、显微硬度计、CS电化学工作站研究AISI316奥氏体不锈钢经低温气体渗碳处理后渗碳层显微组织及力学特性的变化。结果表明,在450,470,500℃温度条件下,在AISI316奥氏体不锈钢表面获得10~33μm的硬化层,随温度的不同,渗层深度、硬度梯度、耐蚀性能呈现不同的变化规律。","authors":[{"authorName":"李朋","id":"e063390b-b21e-46b9-b3af-d07ae96a7722","originalAuthorName":"李朋"},{"authorName":"潘邻","id":"1419efe0-2953-422a-9b8a-94fbfdfc0328","originalAuthorName":"潘邻"},{"authorName":"张良界","id":"83ccf5fc-a7b7-447b-bacb-4d812291882b","originalAuthorName":"张良界"},{"authorName":"杨闽红","id":"92344155-0e84-4df8-868e-f6e05946222b","originalAuthorName":"杨闽红"},{"authorName":"朱云峰","id":"aeb0f909-18e2-4c4c-81d4-de68e03b13d2","originalAuthorName":"朱云峰"},{"authorName":"马飞","id":"d0ecbbc5-d14c-4df2-b160-9dbbea83942e","originalAuthorName":"马飞"}],"doi":"","fpage":"26","id":"9b2f74a4-61fb-4f61-bf65-61131cfa2898","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"b877ff96-f9cf-4a90-a5c4-47e9ac86f2d3","keyword":"低温气体渗碳","originalKeyword":"低温气体渗碳"},{"id":"ee827345-b8f8-44d8-be4a-4cecdb72ed64","keyword":"奥氏体不锈钢","originalKeyword":"奥氏体不锈钢"},{"id":"e5690b4d-27e4-4553-acf8-4e7cf8e33acb","keyword":"渗碳层","originalKeyword":"渗碳层"},{"id":"bf0cd752-e907-4175-8cd0-fd46d988ea4e","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"bqclkxygc201303009","title":"奥氏体不锈钢低温气体渗碳过程中温度对渗碳层的影响","volume":"","year":"2013"},{"abstractinfo":"为解决常规盐浴渗碳、等离子渗碳低温渗碳工艺在提高奥氏体不锈钢硬度的同时会降低其耐蚀性能的问题,在LTCSS工艺的基础上,提出了兼顾硬度和耐腐蚀性能的低温气体渗碳工艺,并对304、316奥氏体不锈钢分别在470,500℃进行渗碳处理,研究了渗碳层的组织及耐蚀性能.结果表明:在470℃渗碳后,304、316不锈钢获得15~20 μm的耐蚀强化层,硬度提高4~5倍,耐蚀性能未降低;但304不锈钢渗碳层的厚度、硬度及耐蚀性均不如316不锈钢渗碳层的.","authors":[{"authorName":"张良界","id":"2879e7a6-5ff6-44ed-b794-81aeaa2b712e","originalAuthorName":"张良界"},{"authorName":"李朋","id":"b0d3ce33-e6e0-4642-ac91-948cb1286a6f","originalAuthorName":"李朋"},{"authorName":"潘邻","id":"92d179ac-5dab-4263-9aa1-edc95f55c2f3","originalAuthorName":"潘邻"},{"authorName":"杨闽红","id":"bec38624-7b77-477e-a99d-222197c0e74d","originalAuthorName":"杨闽红"},{"authorName":"朱云峰","id":"076fea42-dd6e-424d-a098-109e791fc341","originalAuthorName":"朱云峰"},{"authorName":"马飞","id":"2b3c256d-a3ff-44b9-8459-c51145fc9aac","originalAuthorName":"马飞"}],"doi":"","fpage":"44","id":"d7dfc7bc-0fdc-4856-97ac-5516f54aae90","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"a4962a03-375f-433b-8a90-96574eb42958","keyword":"耐蚀强化层","originalKeyword":"耐蚀强化层"},{"id":"ce1dcf03-544e-4aab-b283-3123e7c8e86a","keyword":"低温气体渗碳","originalKeyword":"低温气体渗碳"},{"id":"0624a6c3-498e-4b75-a529-cdbd3e366d5e","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"},{"id":"e18e502d-a68b-4478-84a1-b409a24b5f82","keyword":"交流阻抗","originalKeyword":"交流阻抗"}],"language":"zh","publisherId":"jxgccl201403011","title":"奥氏体不锈钢低温气体渗碳后的表面组织、硬度与耐蚀性能","volume":"38","year":"2014"},{"abstractinfo":"采用拉伸试验机对304奥氏体不锈钢进行了不同程度的塑性预应变,然后利用新型低温气体渗碳工艺对其进行渗碳处理,最后通过残余应力仪、X射线衍射仪、铁素体测量仪等分析了预应变对304奥氏体不锈钢低温气体渗碳的影响.结果表明:预应变后304奥氏体不锈钢中发生了马氏体相变,马氏体转变量随着变形程度的增大而增多,当预应变超过15%后马氏体转变量的增加比较显著;预应变几乎不会影响其渗碳层的厚度,且渗碳层中的马氏体转变为扩张奥氏体(γC);预应变不影响304奥氏体不锈钢低温气体渗碳的表面强化效果.","authors":[{"authorName":"付明辉","id":"41e4e383-cbab-411a-8ae8-68865475f5a2","originalAuthorName":"付明辉"},{"authorName":"巩建鸣","id":"0cf6935e-6d84-4741-8d99-5a1e85746781","originalAuthorName":"巩建鸣"},{"authorName":"姜勇","id":"2a9dacc8-b520-4881-a2aa-fbcffcb1c39f","originalAuthorName":"姜勇"},{"authorName":"彭亚伟","id":"4da218e9-bfb9-49f1-a9b7-7b0d11a580e5","originalAuthorName":"彭亚伟"}],"doi":"10.11973/jxgccl201705002","fpage":"7","id":"b3134790-ab1c-46cd-ad47-9690ac762d70","issue":"5","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"3817fb06-4011-41f9-9b87-e3f46cc858a7","keyword":"304奥氏体不锈钢","originalKeyword":"304奥氏体不锈钢"},{"id":"4b69a28d-369d-4fb0-bef0-889b0826c5d9","keyword":"预应变","originalKeyword":"预应变"},{"id":"c9e00b79-3234-45c2-b8cb-8fb28b8c4bde","keyword":"马氏体","originalKeyword":"马氏体"},{"id":"3e5038c3-eeef-4989-aae6-f45cd1b1e70a","keyword":"低温气体渗碳","originalKeyword":"低温气体渗碳"}],"language":"zh","publisherId":"jxgccl201705002","title":"预应变对304奥氏体不锈钢低温气体渗碳的影响","volume":"41","year":"2017"},{"abstractinfo":"开展316L奥氏体不锈钢块状试样低温气体渗碳实验,测量渗碳层内沿深度方向的C浓度和应力的大小及分布;基于应力-扩散耦合作用理论,建立渗碳渗碳层内的C浓度和应力分布的计算模型,利用该模型计算上述渗碳实验后试样沿深度方向的C浓度和应力分布,并将模型计算结果和实验结果进行比较.结果表明,低温气体渗碳后钢在表层产生一层含高C浓度的渗碳层,渗碳层内重现高的压应力,C浓度和压应力均在表面处最大,随着深度的增加而逐渐降低,压力和浓度的大小之间呈直线关系;考虑应力-扩散的耦合作用的扩散计算模型计算得到的C浓度分布和实验测量结果符合的较好,表明扩散引起的应力在低温气体渗碳的C扩散中扮演重要角色;扩散压应力的产生显著增加了C的表观扩散速度,在低温气体渗碳等类似的渗碳或氮的扩散机制研究中,需考虑扩散引起的扩散压应力与扩散之间的相互作用关系.","authors":[{"authorName":"王艳飞","id":"75ad996c-c9eb-4a9e-b867-74ca9393ba57","originalAuthorName":"王艳飞"},{"authorName":"巩建鸣","id":"1f36821d-5ee6-4d90-b247-87d7ad67b76c","originalAuthorName":"巩建鸣"},{"authorName":"荣冬松","id":"def0d844-bc21-41ad-ac20-b47d7a71cf9b","originalAuthorName":"荣冬松"},{"authorName":"高峰","id":"9b4fe1e6-2a53-478d-b534-e91e44e63918","originalAuthorName":"高峰"}],"doi":"10.3724/SP.J.1037.2013.00537","fpage":"409","id":"b57423fc-a07a-4234-99e3-5c3a33c7e177","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"8676d04f-2893-447b-ad52-4e3050bcbe49","keyword":"低温气体渗碳","originalKeyword":"低温气体渗碳"},{"id":"6de9df28-6507-437e-ad4a-6b61893fffdc","keyword":"316L奥氏体不锈钢","originalKeyword":"316L奥氏体不锈钢"},{"id":"1d4bbcae-12fa-4c8e-934e-a2dabf8f93c8","keyword":"C浓度","originalKeyword":"C浓度"},{"id":"536100c7-a263-4b90-92a0-6d3c998adba9","keyword":"扩散应力","originalKeyword":"扩散应力"}],"language":"zh","publisherId":"jsxb201404004","title":"不锈钢低温气体渗碳的C浓度与扩散应力测量与计算","volume":"50","year":"2014"},{"abstractinfo":"采用自主研发的低温气体渗碳技术对AISI316奥氏体不锈钢进行处理,目的是增强耐磨性且不损害其耐蚀性.对低温气体渗碳层显微组织、硬度梯度、耐蚀性和耐磨性进行分析.结果表明:低温气体渗碳层硬度梯度变化与其组织和碳浓度有一定关系,随渗碳层深度的不同表现出不同的组织和性能.低温气体渗碳处理前后AISI316奥氏体不锈钢的磨损机制由粘着磨损转变成磨粒磨损,S相是提高耐磨性的主要因素,470℃时表现出较好的耐磨性,其耐蚀性基本保持不变.","authors":[{"authorName":"马飞","id":"453c2774-40b2-44fc-aa51-ed550f8c076e","originalAuthorName":"马飞"},{"authorName":"潘邻","id":"5d55e7d3-12f3-4ded-8507-019e81c4f6c7","originalAuthorName":"潘邻"},{"authorName":"张良界","id":"07bcda09-99ce-483f-9f29-06e9dd74ce5a","originalAuthorName":"张良界"},{"authorName":"李朋","id":"541049ca-5658-4c5d-b53f-60874fe4ec6c","originalAuthorName":"李朋"},{"authorName":"朱云峰","id":"8991cfc8-1f46-4573-9281-d4d7c495fa3a","originalAuthorName":"朱云峰"},{"authorName":"杨闽红","id":"541f12ae-1eb8-40ad-9305-148b11f1b57c","originalAuthorName":"杨闽红"}],"doi":"","fpage":"216","id":"68eec457-0b22-4973-a77a-7802a6317234","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"a4c4e1ff-9825-493e-8529-a8917b7c181d","keyword":"低温气体渗碳","originalKeyword":"低温气体渗碳"},{"id":"1bafa337-4868-41f3-bb42-8069e54da5ed","keyword":"AISI316奥氏体不锈钢","originalKeyword":"AISI316奥氏体不锈钢"},{"id":"2591fadd-2572-407e-a7b1-9da7207db2a1","keyword":"耐蚀","originalKeyword":"耐蚀"},{"id":"19fddc6a-e7de-4996-98ef-d08f009f883b","keyword":"耐磨","originalKeyword":"耐磨"},{"id":"a000c621-bb6f-4b11-bd79-e4e806345889","keyword":"S相","originalKeyword":"S相"}],"language":"zh","publisherId":"jsrclxb201506041","title":"316奥氏体不锈钢低温气体渗碳层组织与强化性能","volume":"36","year":"2015"},{"abstractinfo":"目的 将低温离子-气体乙炔渗碳应用于AISI 316L奥氏体不锈钢表面硬化处理,同时探讨其硬化处理的最优工艺参数及优化效果.方法 采用离子轰击去除不锈钢表面钝化膜并活化其表面,再进行低温气体乙炔渗碳,实验过程使用脉冲式供气循环处理方式.进行温度梯度实验,寻找渗碳处理的临界温度.并采用正交试验法设计3因素3水平共9组实验,分析气体比例、离子轰击时间、保温压强3个因素对渗碳层硬度和厚度产生的影响,以期得到不锈钢低温离子-气体乙炔渗碳优化工艺.通过对经过最优化工艺处理过后的不锈钢硬化层组织、成分、厚度、硬度、耐磨性、耐蚀性能的研究分析,验证此工艺对AISI 316L奥氏体不锈钢硬化处理的适用性.结果 处理温度为540℃时渗碳层有碳的铬化物析出;离子轰击时间对渗碳层硬度影响最大,保温压强对硬化层厚度影响最明显.在硬化处理温度为520℃,V(H2):V(C2H2)=1:1,渗碳压强为?0.02 Mpa,离子轰击时间为20 min时,316L奥氏体不锈钢离子-气体乙炔渗碳效果最优.经优化工艺处理后不锈钢硬化层厚度达到30μm左右,表面硬度达到838HV0.05,耐蚀性和耐磨性能等都显著提高.结论 低温离子-气体乙炔渗碳硬化处理适用于AISI 316L奥氏体不锈钢,其处理最合适温度为520℃.经优化工艺处理后的不锈钢具有较高的硬度、厚度,良好的硬度梯度,高耐蚀性能及高耐磨性能.","authors":[{"authorName":"周梦飞","id":"d116ce22-a9c2-4e26-9b73-4ae598eb5dc3","originalAuthorName":"周梦飞"},{"authorName":"赵程","id":"f6de293f-ad91-4691-b8e3-a7cedc9f1392","originalAuthorName":"赵程"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.02.026","fpage":"159","id":"ae27a51e-22c4-453c-bf2f-c1ad139ebd0a","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"a2a3b073-c4c8-4324-92b7-e954c25675d1","keyword":"AISI316L奥氏体不锈钢","originalKeyword":"AISI316L奥氏体不锈钢"},{"id":"03ee2e0f-7f06-4337-af06-143fd25baac1","keyword":"离子轰击活化","originalKeyword":"离子轰击活化"},{"id":"956b31a4-a315-4767-a9e1-8de99e640ca6","keyword":"低温离子-气体乙炔渗碳","originalKeyword":"低温离子-气体乙炔渗碳"},{"id":"8f2dd12b-5abf-48c7-a445-b74f13f19494","keyword":"渗碳工艺参数","originalKeyword":"渗碳工艺参数"},{"id":"a4ebd91c-eac4-441d-8d66-d4befb90ec8a","keyword":"正交实验","originalKeyword":"正交实验"},{"id":"8d2c5332-3b12-447b-9fff-733ede7eebdc","keyword":"S相","originalKeyword":"S相"}],"language":"zh","publisherId":"bmjs201702026","title":"AISI 316L奥氏体不锈钢低温离子-气体渗碳工艺优化","volume":"46","year":"2017"},{"abstractinfo":"利用QK-1型可控环境试验机研究了AISI316奥氏体不锈钢低温(470℃)气体渗碳层的摩擦学性能.结果表明,316奥氏体不锈钢低温气体渗碳层在进行低速对磨时(100 r/min)摩擦系数较大,在高速对磨时(300 r/min)摩擦系数和316奥氏体不锈钢低速和高速对磨时的摩擦系数基本一致;质量磨损率在低速和高速对磨时都减少,高速下低温渗碳层减少了3.5倍左右,低速下减少的幅度更大,达到10倍以上.316奥氏体不锈钢低温渗碳层表现为较好的耐磨性,磨损机制为磨粒磨损;316奥氏体不锈钢的磨损机制为粘着磨损,伴随着塑性变形的产生.","authors":[{"authorName":"马飞","id":"a2ceab00-8807-46bd-9e2f-fabf219789b1","originalAuthorName":"马飞"},{"authorName":"潘邻","id":"90e5fba8-df68-495e-813f-88b78dffbca2","originalAuthorName":"潘邻"},{"authorName":"张良界","id":"1629a07e-2d44-4654-a49c-4ff36002f638","originalAuthorName":"张良界"},{"authorName":"李朋","id":"6a7484d4-c9a9-40c5-ae31-ab87c9841fa9","originalAuthorName":"李朋"},{"authorName":"朱云峰","id":"d2045315-f8a0-45c5-aa7a-85cab03a0a6b","originalAuthorName":"朱云峰"},{"authorName":"杨闽红","id":"770e5df7-bfe9-44b4-a475-355ef8d131c3","originalAuthorName":"杨闽红"},{"authorName":"童幸生","id":"4a52e322-a123-4402-9eae-84345108001f","originalAuthorName":"童幸生"},{"authorName":"王成虎","id":"052b1d32-bc26-4f35-8fe4-79da8f7bbe33","originalAuthorName":"王成虎"}],"doi":"","fpage":"181","id":"5d371858-db19-41fd-9f82-75ace8911515","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"f91e00aa-c8c8-40e8-b64e-34659ad6ac34","keyword":"316奥氏体不锈钢","originalKeyword":"316奥氏体不锈钢"},{"id":"d7b7b040-27f5-4f7a-8fa2-6362995cf6af","keyword":"低温气体渗碳","originalKeyword":"低温气体渗碳"},{"id":"34b5ae43-d466-4f68-bb94-b6ce15f02e86","keyword":"摩擦学性能","originalKeyword":"摩擦学性能"}],"language":"zh","publisherId":"jsrclxb201401034","title":"316奥氏体不锈钢低温渗碳层摩擦学性能","volume":"35","year":"2014"},{"abstractinfo":"采用OM,EPMA,XRD和IXRD等手段,研究了低温超饱和渗碳(low temperature colossal carburization,LTCC)工艺中CO气体浓度对316L不锈钢表面渗碳层的微观组织、C浓度分布、表面相结构以及残余应力的影响.基于热动力学理论建立了LTCC传质和扩散模型,利用DICTRA软件计算了渗碳层的C浓度和活度分布,并与实验结果进行比较.结果表明,经LTCC工艺处理后的316L不锈钢表面会形成高硬度的S相,并产生压缩残余应力.另外,增加渗碳工艺中CO浓度可以显著提高不锈钢表面渗碳层中的C浓度,进而提高其硬度和压缩残余应力.在C浓度较低时,计算的C浓度和活度分布与实验结果吻合很好,当C浓度较高时,由于陷阱阵点的减少以及较大压缩残余应力的作用导致计算结果偏低.","authors":[{"authorName":"荣冬松","id":"38bbaed5-4384-42be-bda2-abdc01d3ae75","originalAuthorName":"荣冬松"},{"authorName":"姜勇","id":"2477e8d9-00ad-4977-9e40-a257f90c46d2","originalAuthorName":"姜勇"},{"authorName":"巩建鸣","id":"2eb99485-2f5c-402c-8dc2-34d7215783ed","originalAuthorName":"巩建鸣"}],"doi":"10.11900/0412.1961.2015.00170","fpage":"1516","id":"8a4f17d2-b1eb-454e-9f1b-3f66697643d6","issue":"12","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"af3f9315-ef7b-476f-a0a1-4b3e4f71a716","keyword":"低温超饱和渗碳","originalKeyword":"低温超饱和渗碳"},{"id":"6ecae5c2-5a73-4881-91e9-10a4466baed2","keyword":"奥氏体不锈钢","originalKeyword":"奥氏体不锈钢"},{"id":"a61036ab-8dff-450f-a70d-115f8c94282d","keyword":"DICTRA","originalKeyword":"DICTRA"},{"id":"64bdc0ed-9df0-452c-ad8b-23e3f0382217","keyword":"C浓度","originalKeyword":"C浓度"},{"id":"92140a74-f6f4-4b1e-84dc-26bec2a4068b","keyword":"活度","originalKeyword":"活度"}],"language":"zh","publisherId":"jsxb201512012","title":"奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究","volume":"51","year":"2015"},{"abstractinfo":"通过对材料表面强化处理,可以改变材料表面的成分和结构,从而提高表面硬度.利用低温气体多元共渗技术对25CrNiMo钢试样进行处理,研究了渗层的显微组织和显微硬度.结果表明,在25CrNiMo钢的表面形成了以碳化物和氮化物为主的渗层,渗层厚度可达340μm,其表面显微硬度最高可达859HV,是基体显微硬度250HV的3.4倍.","authors":[{"authorName":"姚斌","id":"83d8da32-feff-4771-98f8-fe1f732ef5bc","originalAuthorName":"姚斌"},{"authorName":"杨英歌","id":"1990737e-7730-4711-866c-ac64cf3916f0","originalAuthorName":"杨英歌"},{"authorName":"陈飞","id":"9c216a03-05e1-4db8-b314-4781d46b456a","originalAuthorName":"陈飞"},{"authorName":"周海","id":"8cec9d29-bc8f-481c-b911-79e57acd894e","originalAuthorName":"周海"},{"authorName":"丁莉","id":"e8afd77d-cf32-45aa-b405-67326d73dbdc","originalAuthorName":"丁莉"}],"doi":"10.3969/j.issn.1001-3660.2006.03.010","fpage":"28","id":"c1903ab6-d3cc-403e-9fb9-fd13ffdd6c7f","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"bba95f9f-9b3d-4b19-9b7a-f38ac4b9dfc4","keyword":"多元共渗","originalKeyword":"多元共渗"},{"id":"8448380f-12d1-437f-8e83-e99723b2bd5f","keyword":"合金渗碳钢","originalKeyword":"合金渗碳钢"},{"id":"40c231ab-9916-4bc1-adf9-1c46f9ceb690","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"bmjs200603010","title":"合金渗碳钢表面低温气体多元共渗研究","volume":"35","year":"2006"}],"totalpage":804,"totalrecord":8036}