{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对工业炉的高温空气燃烧技术,利用CFD技术,对一个多股射流燃烧器喷口在高温空气燃烧条件下的燃烧特性进行了数值研究,烧室尺寸为800mm×800mm×1400mm,燃料喷口为圆形,直径为10mm,位于中心。空气喷口设计为五个等面积的圆形,置于燃气喷口周围。采用标准的k-双方程模型计算流场,气相燃烧模型采用采用函数的PDF燃烧模型,采用离散坐标法模拟辐射换热过程,NOX模型为热力型NOX。对燃烧器喷口几何结构对炉内燃烧温度分布、NOX生成等进行了讨论。结果表明,喷口几何结构的合理布置能够改变燃烧室内的烟气回流及其与燃料、空气的混合特点,从而影响局部温度的分布和决定燃烧状况、影响最终的NOX排放量。当燃料射流喷口与空气射流喷口的间距增大时,能有效的延缓燃料和空气的混合,烟气回流将会增加燃烧室内气体的混合程度,降低燃烧室内局部氧浓度,有利于扩大低氧区域,扩大燃烧区域,并且使炉膛温度变得均匀,减少局部高温区,降低NOX的生成。I=2.5时的NOX排放浓度为45ppm。燃烧空气散布角越小,燃料、氧以及燃烧后的高温烟气等的混合越充分,燃烧越稳定,低氧区域扩大,温度分布均匀,局部高温受到抑制,局部NOX的生成减少。在15%的氧条件下,=120°时与=360°相比,NOX排放量可减少65%。当燃料射流倾角增大时,平均温度和最高温度都降低,燃烧室内低氧区域扩大,从而影响了局部燃烧特性和局部NOX的生成。研究结果对于工业炉的结构设计有一定参考意义。εεεθ","authors":[{"authorName":"苏亚欣\t汪文辉\t赵丹\t杨艳超","id":"d6315333-a28b-4782-aa11-d82b5365adf6","originalAuthorName":"苏亚欣\t汪文辉\t赵丹\t杨艳超"}],"categoryName":"|","doi":"","fpage":"94","id":"f12244d2-6b5c-41c0-a776-8e21ae1ccb3e","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6c83d47c-e7e1-4e53-9589-86ed304c212a","keyword":"工业炉;高温空气燃烧;喷口结构;数值模拟","originalKeyword":"工业炉;高温空气燃烧;喷口结构;数值模拟"}],"language":"zh","publisherId":"0449-749X_2010_7_11","title":"射流参数对单烧嘴燃烧室高温空气燃烧特性的影响的数值研究","volume":"45","year":"2010"},{"abstractinfo":"从工程实际出发,本文提出了高温空气低燃气浓度燃烧新技术,即充分利用烟气余热提高助燃空气温度,提高热能利用率;同时通过优化喷口结构,提高燃气射流速度,使燃气射流在同空气射流混合燃烧前卷吸大量炉内烟气,从而降低燃气射流中的可燃物浓度,进而降低氮氧化物的排放.通过数值模拟研究表明,通过燃气射流速度从24.56 m/s提高到55.26 m/s,可以降低NOx的排放;当围绕燃气喷口的六个圆形空气喷口改为两个矩形喷口时,燃气射流可从两侧卷吸更多的炉内烟气,形成低燃气浓度燃烧,从而大大降低了NOx的排放.","authors":[{"authorName":"朱彤","id":"e44b538d-b77f-4163-8aec-65064555e99d","originalAuthorName":"朱彤"},{"authorName":"吴家正","id":"9df902d5-8a19-46a0-8f97-4aa1c22def76","originalAuthorName":"吴家正"},{"authorName":"冯良","id":"a93c90c0-fb0b-4955-84fd-bfbe5fce5289","originalAuthorName":"冯良"},{"authorName":"张鹤声","id":"ab39f142-f1b6-48ac-8ae3-deb8d58cb018","originalAuthorName":"张鹤声"}],"doi":"","fpage":"277","id":"b9e10733-b8db-48da-9975-8e67e9226022","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"fff6e22f-2a50-47e0-9ab2-75f4eccf9ff1","keyword":"高温空气燃烧技术","originalKeyword":"高温空气燃烧技术"},{"id":"296cbb22-032b-45b0-bd02-26a136e296ee","keyword":"氮氧化物","originalKeyword":"氮氧化物"},{"id":"7c6af534-5ab5-4a7a-90a3-d5831aa346c0","keyword":"射流","originalKeyword":"射流"},{"id":"0de29c3a-ff9a-449d-a616-4a260a019935","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb2005z1072","title":"高温空气低燃气浓度燃烧过程的数值模拟研究","volume":"26","year":"2005"},{"abstractinfo":"以工业炉的高温空气燃烧技术应用为背景,对一个单烧嘴燃烧室内的高温空气燃烧特性进行了数值研究.燃烧室尺寸为800mm×800mm×1400mm,燃烧器烧嘴由燃气和高温预热空气多股射流组成,其中燃料射流喷口为圆形,直径为10mm,位于中心.空气射流喷口为5个等面积的圆形,置于燃气射流喷口周围.湍流输运方程采用标准k-ε双方程模型,气相燃烧模型采用β函数的PDF燃烧模型,辐射换热过程采用离散坐标法模拟,NOx模型为热力型NOx.对燃气射流和空气射流的进口参数对燃烧室内的燃烧特性的影响进行了模拟计算和分析.计算结果表明射流进口参数将影响和改变燃烧室内的烟气回流及其与燃料、空气的混合过程,从而影响局部温度、氧浓度的分布和决定燃烧状况、影响最终的NOx排放量.其中随着燃料射流和空气射流速度比和燃料射流倾角的增大,燃烧室内的烟气回流区域扩大,强化了燃料、空气和烟气的混合,使低氧区域扩大,燃烧室内最高温度和平均温度都降低,NOx生成量明显降低.研究结果对于工业炉的烧嘴设计有一定参考意义.","authors":[{"authorName":"苏亚欣","id":"6ba8d9c2-2192-406f-bf03-81b9a7e7d280","originalAuthorName":"苏亚欣"},{"authorName":"汪文辉","id":"a86d8e1f-b455-41b2-9882-80045c32271c","originalAuthorName":"汪文辉"},{"authorName":"赵丹","id":"0bb4cb8b-6b14-45de-8540-c731fc4cb29b","originalAuthorName":"赵丹"},{"authorName":"杨艳超","id":"988142f8-db2e-41a3-8460-c481fb3e3b30","originalAuthorName":"杨艳超"}],"doi":"","fpage":"94","id":"40246af5-b50c-4350-928c-f983bf06c1dc","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"00e2654b-de67-4176-ab09-daefc51fc698","keyword":"工业炉","originalKeyword":"工业炉"},{"id":"e033e955-f430-4ed6-adb5-776993053e2b","keyword":"高温空气燃烧","originalKeyword":"高温空气燃烧"},{"id":"d7a164d8-8570-47b8-a6b2-cb98547e0ed9","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gt201007020","title":"射流参数对单烧嘴燃烧室高温空气燃烧特性的影响的数值研究","volume":"45","year":"2010"},{"abstractinfo":"叙述了利用高效蓄热燃烧技术开发的高效蓄热式工业炉,将蓄热式热回收和换向式燃烧系统与炉体结合于一体,可将空气和煤气双预热到1 100 ℃,系统排烟温度低于130 ℃,可在轧钢加热炉上以全高炉煤气为燃料.工业炉热效率达到70 %以上,并提高加热质量、减少钢坯氧化烧损.在工业炉上应用的实际结果表明:高效蓄热式工业炉技术取得了显著的节能效益和环保效益.","authors":[{"authorName":"侯长连","id":"2fc9d627-08b1-4319-bc0f-bd5843f98c4e","originalAuthorName":"侯长连"},{"authorName":"胡和平","id":"a1528e5f-ba83-4470-b5d6-b5b2810b04ce","originalAuthorName":"胡和平"},{"authorName":"董为民","id":"0846cde0-4b42-4082-a9ee-d709fcc32fc0","originalAuthorName":"董为民"},{"authorName":"唐献红","id":"11f77989-d113-4359-af28-65e657a369c7","originalAuthorName":"唐献红"},{"authorName":"张军","id":"13074623-128e-4d25-aefa-49648774b6ef","originalAuthorName":"张军"},{"authorName":"李领","id":"1beb13ac-0cd5-4950-950b-db8977e64643","originalAuthorName":"李领"}],"doi":"","fpage":"65","id":"283197da-04e3-476f-b92e-7554547428b9","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"9092587e-4d65-487f-ac24-6e6b24fb4264","keyword":"蓄热燃烧","originalKeyword":"蓄热燃烧"},{"id":"c062b532-5bc9-4e78-912b-2261f2bb42c3","keyword":"高炉煤气","originalKeyword":"高炉煤气"},{"id":"898153af-b085-49ba-a809-464cfd8a2b38","keyword":"加热炉","originalKeyword":"加热炉"},{"id":"b6c9aa75-dd95-49f1-8cde-dad7cbd338ce","keyword":"节能","originalKeyword":"节能"}],"language":"zh","publisherId":"gt200201017","title":"高效蓄热式工业炉的开发与应用","volume":"37","year":"2002"},{"abstractinfo":"通过建立圆管状燃烧室内甲烷气体燃烧的数学模型,对燃烧室回流区的温度场、速度场、流场以及甲烷、氧气、二氧化碳以及氮氧化合物的质量分数进行了数值模拟。通过改变入口高温空气的预热温度,数值模拟了以上变量的分布规律。研究结果表明,提高空气的预热温度,燃烧室内的反应进行越彻底,温度分布更均匀。研究结果对燃烧室的设计和燃烧室工况分析具有指导意义,所建立的数学模型为燃烧室几何和结构设计和燃烧过程操作中进行定量分析的有效手段。","authors":[{"authorName":"吕军","id":"2ab69094-0831-4913-8f0c-95c091e59ab5","originalAuthorName":"吕军"},{"authorName":"唐一科","id":"e652bf3e-42bb-43f1-89ec-7eddfdd4f105","originalAuthorName":"唐一科"},{"authorName":"欧阳奇","id":"9d40468e-2cac-492d-80f9-836f68c91fc4","originalAuthorName":"欧阳奇"}],"categoryName":"|","doi":"","fpage":"23","id":"1c0d15a4-a7d7-4085-8eac-0e27fc4321b7","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"bcdd357a-82d8-4d04-95ae-855a5349cdda","keyword":"燃烧室","originalKeyword":"燃烧室"},{"id":"d065631a-c341-4255-a343-030e21ecba69","keyword":"numerical simulation","originalKeyword":"numerical simulation"},{"id":"d6c957d7-d318-435d-9b7d-a475c86d83f6","keyword":"working state analysis","originalKeyword":"working state analysis"},{"id":"b51099fd-32fb-4b2e-a0bc-9efb60ada75c","keyword":"high temperature air","originalKeyword":"high temperature air"}],"language":"zh","publisherId":"1001-0777_2008_1_12","title":"高温空气对燃烧回流区流动影响的数值模拟","volume":"26","year":"2008"},{"abstractinfo":"通过建立圆管状燃烧室内甲烷气体燃烧的数学模型,对燃烧室回流区的温度场、速度场、流场以及甲烷、氧气、二氧化碳以及氮氧化合物的质量分数进行了数值模拟.通过改变入口高温空气的预热温度,数值模拟了以上变量的分布规律.研究结果表明:提高空气的预热温度,燃烧室内的反应进行越彻底,温度分布更均匀.研究结果对燃烧室的设计和燃烧室工况分析具有指导意义,所建立的数学模型为燃烧室几何及结构设计和燃烧过程操作中进行定量分析的有效手段.","authors":[{"authorName":"吕军","id":"d2d52961-838d-422a-912b-b1f70d1effa6","originalAuthorName":"吕军"},{"authorName":"唐一科","id":"56265c9d-4bd4-4bc1-8c7a-c2236338cf64","originalAuthorName":"唐一科"},{"authorName":"欧阳奇","id":"a2553b62-0a6b-43b0-8c45-bebd0f06d67c","originalAuthorName":"欧阳奇"}],"doi":"","fpage":"55","id":"26319706-0861-4a14-9acd-c33592e8ba53","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"8cbd1582-0585-411f-8c53-2c5b8475ed26","keyword":"燃烧室","originalKeyword":"燃烧室"},{"id":"4dda0461-1fdb-4791-a5fb-399e258dc3c4","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"ddd601e6-c550-43f4-a42a-182fcc725c42","keyword":"工况分析","originalKeyword":"工况分析"},{"id":"1bda15c7-f765-4d70-bff5-de85319f4573","keyword":"高温空气","originalKeyword":"高温空气"}],"language":"zh","publisherId":"gtyj200801015","title":"高温空气对燃烧回流区流动影响的数值模拟","volume":"36","year":"2008"},{"abstractinfo":"通过建立圆管状燃烧室内甲烷气体燃烧的数学模型,对燃烧室回流区的温度场、速度场、流场以及甲烷、氧气、二氧化碳以及氮氧化合物的质量分数进行了数值模拟.通过改变入口高温空气的预热温度,数值模拟了以上变量的分布规律.研究结果表明,提高空气的预热温度,燃烧室内的反应进行越彻底,温度分布更均匀.研究结果对燃烧室的设计和燃烧室工况分析具有指导意义,所建立的数学模型为燃烧室几何和结构设计和燃烧过程操作中进行定量分析的有效手段.","authors":[{"authorName":"吕军","id":"d278cd07-1ee0-46f3-9718-5209e48a53e7","originalAuthorName":"吕军"},{"authorName":"唐一科","id":"282c9756-d31b-4fef-a4cc-6e1b2451937b","originalAuthorName":"唐一科"},{"authorName":"欧阳奇","id":"3b127199-29b1-4fbc-a03a-68207d7892f7","originalAuthorName":"欧阳奇"}],"doi":"","fpage":"22","id":"590fa6d9-e31d-4a04-a21f-93a42a1d9be9","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"35ad3355-44f1-480f-9842-f07095b97301","keyword":"燃烧室","originalKeyword":"燃烧室"},{"id":"12020040-5e94-4cc8-b569-e545b6e70f9d","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"f7f034f9-ee7c-45fc-934a-5636258bf3b6","keyword":"工况分析","originalKeyword":"工况分析"},{"id":"62b29e81-a080-4d49-b511-c194a913aff1","keyword":"高温空气","originalKeyword":"高温空气"}],"language":"zh","publisherId":"wlcs200801006","title":"高温空气对燃烧回流区流动影响的数值模拟","volume":"26","year":"2008"},{"abstractinfo":"本文通过数值计算的方法,对高温空气煤粉直燃燃烧器的多种运行工况进行了数值试验研究,分析了煤粉气流入口速度、煤粉浓度和高温空气速度等主要因素对煤粉气流着火的影响,模拟结果还可以反映出高温空气无油点火燃烧器内的流动、燃烧和传热情况.与试验数据的对比分析表明,数值模拟结果与试验数据趋势一致.研究结果对此燃烧器的结构及运行参数的优化提供了指导.","authors":[{"authorName":"康志忠","id":"de03fc63-4b39-42b7-a5a1-672bcfac41d9","originalAuthorName":"康志忠"},{"authorName":"张伟","id":"e401da81-dbd1-48f6-9e00-6dfc3698487f","originalAuthorName":"张伟"},{"authorName":"郭永红","id":"4bd86c63-14da-4dc3-9681-29e50a207c24","originalAuthorName":"郭永红"},{"authorName":"孙保民","id":"70b2bc36-5bc6-4014-a7da-f13c9ead7e05","originalAuthorName":"孙保民"},{"authorName":"刘岩","id":"f6dfb543-b3ee-4c63-aab3-5995f08a357d","originalAuthorName":"刘岩"}],"doi":"","fpage":"163","id":"d7ff5213-c163-4647-a009-7fd104652db9","issue":"z2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"87e5a1cf-9df7-49b1-abef-fbdf3769e718","keyword":"煤粉","originalKeyword":"煤粉"},{"id":"8d28ef18-0c93-4678-9e11-6e7293b48c5c","keyword":"燃烧","originalKeyword":"燃烧"},{"id":"be2ab2bc-d4bd-46e0-bbd3-f05775b63d3a","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"e9b59cea-131a-47ad-b6f8-216fedabc842","keyword":"高温空气","originalKeyword":"高温空气"}],"language":"zh","publisherId":"gcrwlxb2006z2043","title":"高温空气煤粉直燃技术的数值模拟","volume":"27","year":"2006"},{"abstractinfo":"通过两种结构烧嘴的热态燃烧试验对比,研究了烧嘴结构、燃气射流速度、过量空气系数对高温空气燃烧过程氮氧化物排放的影响特性.研究结果认为:在燃气喷口两侧布置两个矩形空气喷口的烧嘴,氮氧化物排放量低于圆形空气喷口烧嘴;随着燃气射流速度的提高,高温空气燃烧过程排放的氮氧化物逐渐减少.与普通燃烧过程不同的是,随着过量空气系数的提高,在一定范围内高温空气燃烧的氮氧化物排放量不断增加.分析认为,高温空气燃烧氮氧化物排放量与火焰体积、炉内氧气与燃气混合过程以及燃气射流和空气射流对炉内烟气的卷吸量有关.","authors":[{"authorName":"朱彤","id":"87fc82f6-9189-4f97-9a30-79a303a56a39","originalAuthorName":"朱彤"},{"authorName":"朱尚龙","id":"d11d3a1f-447e-40c0-b3ff-b0ed98229294","originalAuthorName":"朱尚龙"},{"authorName":"曹甄俊","id":"ec89c759-2bdb-43cc-be47-d78badcc00f4","originalAuthorName":"曹甄俊"},{"authorName":"李芃","id":"fe479d49-b6eb-4fa7-a674-025101a07c80","originalAuthorName":"李芃"},{"authorName":"冯良","id":"70cb7f32-278e-49d9-972f-3af6f6fa5ac8","originalAuthorName":"冯良"}],"doi":"","fpage":"894","id":"1a91d9ea-bf69-4720-b719-fc117ae5812d","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4a84417e-bf43-4069-a027-74291bf52da7","keyword":"高温空气燃烧","originalKeyword":"高温空气燃烧"},{"id":"ca60429f-a693-47ff-bd0f-98c2cb340fde","keyword":"氮氧化物","originalKeyword":"氮氧化物"},{"id":"46c55f83-edb6-438e-8d96-e0270e871bdf","keyword":"烧嘴","originalKeyword":"烧嘴"},{"id":"94dad293-bfdd-4d8c-a4cd-7a861a228067","keyword":"射流","originalKeyword":"射流"}],"language":"zh","publisherId":"gcrwlxb200605054","title":"高温空气燃烧NOx排放特性的试验研究","volume":"27","year":"2006"},{"abstractinfo":"为了深入认识近年发展起来的一种新型燃烧技术---高温空气燃烧的机理和超低氮氧化物排放特性,本文将扩散燃烧模型、热力NO生成模拟与完全湍流N-S方程相结合,数值研究了甲烷高温燃烧的火焰特性、空气预热温度对燃烧特性和NO排放浓度的影响规律。研究结果与实验数据符合良好,为在我国发展这项技术提供了依据。","authors":[{"authorName":"李宇红","id":"34c578db-8cfa-493a-bc6e-595a2850ed43","originalAuthorName":"李宇红"},{"authorName":"祁海鹰","id":"937e6885-bfe4-4b82-99a5-2f6fd2385f74","originalAuthorName":"祁海鹰"},{"authorName":"苑皎","id":"2fcce8b5-a804-437f-b586-722e515b6948","originalAuthorName":"苑皎"},{"authorName":"徐旭常","id":"e0f02177-0968-4b6b-b22e-1a5642eabcdf","originalAuthorName":"徐旭常"}],"doi":"","fpage":"257","id":"98a8aaec-5c93-42ac-98fb-4249f0cce876","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"eae26107-be64-4be9-b213-2ea2116396d7","keyword":"甲烷高温空气燃烧","originalKeyword":"甲烷高温空气燃烧"},{"id":"96c03f1f-231a-48b8-992d-7cb2069020d2","keyword":"空气预热温度","originalKeyword":"空气预热温度"},{"id":"4a8f5236-c80d-4840-a20e-80aa2abb531c","keyword":"NO排放浓度","originalKeyword":"NO排放浓度"}],"language":"zh","publisherId":"gcrwlxb200102035","title":"预热温度影响甲烷高温空气燃烧特性的数值分析","volume":"22","year":"2001"}],"totalpage":9639,"totalrecord":96384}