李家文
,
赖华
,
冯丽辉
冶金分析
doi:10.13228/j.boyuan.issn1000-7571.009967
焊锡真空炉粗锡含Pb量的高低直接关系到焊锡真空炉的生产效率,为了改变目前粗锡含Pb量只能通过人工化验才能得到的现状,实验基于反向传播神经网络(Back-Propaga-tion Neural Network,BPNN)与广义回归神经网络(Generalized Regression Neural Network,GRNN)算法原理,构建了BPNN与GRNN软测量模型并对这两种模型的预测效果进行了对比分析,结果表明基于GRNN的粗锡含Pb量软测量模型具有较高的预测精度.同时,采用虚拟仪器(LabVIEW)中的Matlab Script节点技术,成功开发了基于LabVIEW的粗锡含Pb量监测系统,实现了基于BPNN与GRNN软测量模型的粗锡含Pb量实时在线软预测,运行结果表明所开发的监测系统运行稳定可靠.
关键词:
焊锡真空炉
,
粗锡
,
铅
,
软测量
,
BPNN
,
GRNN
,
LabVIEW