{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用微弧氧化技术,在Ti-6Al-2Zr-1Mo-3Nb合金表面制备陶瓷涂层.用扫描电镜和X射线衍射仪观察并分析陶瓷膜层的组织形貌和相结构,用电子万能材料试验机和数字万用表研究膜层的结合强度和绝缘性,并用MMS-IG高温高速销盘摩擦磨损试验机和YWX/Q-750盐雾试验机考察涂层的摩擦性能和耐腐蚀性能.结果表明:陶瓷层主要由金红石TiO<,2>相和锐钛矿TiO<,2>相构成,膜基结合强度达到30 MPa以上,膜层绝缘性和耐腐蚀性良好,耐磨性得到明显改善,涂层的磨损机制表现为轻微的磨粒磨损与粘着磨损.","authors":[{"authorName":"","id":"1f756a87-208f-4995-bc08-1ad663bd9c95","originalAuthorName":"李兆峰"},{"authorName":"廖志谦","id":"5bab1cb4-48c5-4d5c-ae4e-b08fa75d3823","originalAuthorName":"廖志谦"},{"authorName":"匡蒙生","id":"c7914ba2-2bcc-4b88-84f0-63aa20a76621","originalAuthorName":"匡蒙生"},{"authorName":"蒋鹏","id":"2195a33b-76bb-47ad-a108-1afe64d9f53f","originalAuthorName":"蒋鹏"},{"authorName":"张建欣","id":"6e8cd49a-3fb6-49d4-8f5f-67806cc632d6","originalAuthorName":"张建欣"}],"doi":"","fpage":"40","id":"2f0ae54f-316a-4e9c-a6ad-d764a2e6d688","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"ab0d2fb0-fc07-4191-98cd-74c01bdb722a","keyword":"Ti-6Al-2Zr-1Mo-3Nb","originalKeyword":"Ti-6Al-2Zr-1Mo-3Nb"},{"id":"0f24ad46-252b-4c98-ad41-d39563d5c643","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"e7d9c569-294a-47f3-8510-0137290cabb4","keyword":"结合强度","originalKeyword":"结合强度"},{"id":"a6508660-5e9c-425c-aa0c-83f17f1970ad","keyword":"绝缘性","originalKeyword":"绝缘性"},{"id":"5f195c87-7014-43d5-901f-a9968d5e1c0d","keyword":"磨损","originalKeyword":"磨损"},{"id":"d6503dc5-8628-4154-a293-b91d25d3ff63","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"xyjsclygc201101010","title":"Ti-6Al-2Zr-1Mo-3Nb合金微弧氧化陶瓷膜的结构与性能","volume":"40","year":"2011"},{"abstractinfo":"采用微弧氧化技术,在磷酸盐溶液体系中在船用Ti-6Al-3Nb-2Zr合金表面制备陶瓷膜层.利用扫描电镜、光学显微镜、X射线衍射仪和显微硬度计对陶瓷膜的表面和截面形貌、氧化层厚度、相结构以及显微硬度进行观察测试,用电子万能材料试验机和数字万用表研究膜层的结合强度和绝缘性,并用MMS-1G高温高速销盘摩擦磨损试验机和YWX/Q-750盐雾试验机考察膜层的摩擦学性能和腐蚀性能.结果表明:膜层厚度可达到20 μm以上,陶瓷膜主要由金红石TiO2相和锐钛矿TiO2相构成,膜层与基体的结合强度达到30 MPa以上,膜层绝缘性和耐蚀性良好,耐磨性得到明显改善,膜层的磨损机制表现为轻微的磨粒磨损与粘着磨损,且以磨粒磨损为主.","authors":[{"authorName":"","id":"0380e94b-6805-4f4c-aef6-638169867dc8","originalAuthorName":"李兆峰"},{"authorName":"杨瑞","id":"d39ff06d-cf5b-42b1-adcf-399ea8c30b33","originalAuthorName":"杨瑞"},{"authorName":"胡光远","id":"175858de-c083-4f90-ad74-556c3fad1b38","originalAuthorName":"胡光远"},{"authorName":"张建超","id":"61f29b64-f73a-4ae9-a4bd-90040b844aef","originalAuthorName":"张建超"}],"doi":"","fpage":"237","id":"37741c71-8906-4a52-9fa7-a92546777e89","issue":"z1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"f41417cf-60c8-4094-a4c4-733d180871f4","keyword":"Ti-6Al-3Nb-2Zr合金","originalKeyword":"Ti-6Al-3Nb-2Zr合金"},{"id":"59626193-e36c-4434-84eb-e78cb37153f8","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"1c69a1d5-eb83-4abf-a294-59fbead00591","keyword":"结合强度","originalKeyword":"结合强度"},{"id":"6f06f99e-92b7-4dd3-99e3-f527b3210058","keyword":"绝缘性","originalKeyword":"绝缘性"},{"id":"e63d876c-5941-495d-b2a8-92183ff84b55","keyword":"磨损","originalKeyword":"磨损"},{"id":"24a68fcf-231e-4395-8784-346161036211","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"zgysjsxb2010z1053","title":"船用Ti-6Al-3Nb-2Zr合金的微弧氧化陶瓷膜","volume":"20","year":"2010"},{"abstractinfo":"选用具有较低熔点的锌作过渡层,采用热喷涂工艺在AZ91D镁合金表面制备了锌铝涂层,并分析热扩散对锌铝涂层界面组织和性能的影响.研究表明:经热扩散处理后,涂层与基体界面处形成扩散熔合区,扩散熔合区由Mg-Zn-Al金属间化合物及其固溶体组成;由于扩散熔合区的形成,使涂层的显微硬度和耐磨性能均显著提高.","authors":[{"authorName":"黄伟九","id":"1abfa555-7569-4167-8f86-3caa1a8f1421","originalAuthorName":"黄伟九"},{"authorName":"","id":"926f3371-15fe-4a92-ba70-94e2318c2d5e","originalAuthorName":"李兆峰"},{"authorName":"刘明","id":"dc556172-2ad9-4098-b245-ced3998179a1","originalAuthorName":"刘明"},{"authorName":"黄福祥","id":"2475b0b4-e897-4f9c-9ea6-08f7780ede31","originalAuthorName":"黄福祥"},{"authorName":"张津","id":"9b257ba3-7d03-4aee-86e3-009c56598c57","originalAuthorName":"张津"}],"doi":"10.3969/j.issn.1009-6264.2007.02.024","fpage":"106","id":"54daca9b-8187-4ceb-88c2-d3627d193626","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"714eb435-32ba-4fa8-9049-4f67c878ad61","keyword":"AZ91D镁合金","originalKeyword":"AZ91D镁合金"},{"id":"e0821b3a-8f86-4579-a171-1e3ece004f60","keyword":"锌铝涂层","originalKeyword":"锌铝涂层"},{"id":"ee24c9b7-1b64-4b71-a6b9-4edd02ea0ceb","keyword":"组织","originalKeyword":"组织"},{"id":"2caea2c3-5ef6-45bd-99f4-4a5a7473ba55","keyword":"界面扩散层","originalKeyword":"界面扩散层"},{"id":"284dc264-fc8b-44e1-a280-b57535c0645c","keyword":"涂层性能","originalKeyword":"涂层性能"}],"language":"zh","publisherId":"jsrclxb200702024","title":"热扩散对镁合金锌铝涂层界面组织和性能的影响","volume":"28","year":"2007"},{"abstractinfo":"采用物理气相沉积技术,在TC4合金表面成功制备出CrN和DLC耐磨涂层.用扫描电镜和光学显微镜分析了耐磨涂层的表面/截面形貌和涂层厚度,VHM-I04显微硬度计测试了涂层的硬度,WS-1型划痕试验机研究了涂层的结合强度,IPC-208B原子力显微镜观察了DLC涂层的表面粗糙度,并采用TE66微磨损试验机系统考核了两种涂层的摩擦学性能.结果表明:CrN涂层厚度为5.12 μm,硬度HV 1 267,结合力为22.95 N;DLC涂层由致密分布的纳米颗粒组成,厚度2.30 μm,硬度HV 2 176,结合力24.85 N,表面粗糙度仅为4.86 nm;与裸TC4合金和CrN涂层相比,DLC涂层的摩擦系数较小,只有0.073,具有较好的减摩和抗磨性.","authors":[{"authorName":"","id":"be68ab5d-02fd-45bf-a0de-96dc4081a180","originalAuthorName":"李兆峰"},{"authorName":"志强","id":"4a2fba91-1408-4b74-9f51-d33fd747aa27","originalAuthorName":"李志强"},{"authorName":"赵朋举","id":"13f0e2c3-6ccb-4700-999a-0536984cbb31","originalAuthorName":"赵朋举"},{"authorName":"士凯","id":"793b741e-9830-4abc-8182-050b89051f09","originalAuthorName":"李士凯"},{"authorName":"张建欣","id":"4c4f38c4-d375-4f6e-a428-535ac5682127","originalAuthorName":"张建欣"}],"doi":"","fpage":"43","id":"673e0947-04fe-4342-aad3-d34d848ea46c","issue":"4","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"ca182cc2-ea91-4b36-8186-3b85c1a45cc4","keyword":"TC4钛合金","originalKeyword":"TC4钛合金"},{"id":"351c7eea-759c-4491-be40-3b82ea402422","keyword":"CrN涂层","originalKeyword":"CrN涂层"},{"id":"dbfbaf70-82b1-490e-8148-9e19abb6211d","keyword":"DLC涂层","originalKeyword":"DLC涂层"},{"id":"4289502f-ab1e-415c-add0-023ead55e7f2","keyword":"结合力","originalKeyword":"结合力"},{"id":"35f53132-6919-4700-b52e-bc6bf56834ae","keyword":"摩擦系数","originalKeyword":"摩擦系数"}],"language":"zh","publisherId":"clkfyyy201404009","title":"TC4钛合金表面CrN和DLC耐磨涂层制备及性能研究","volume":"29","year":"2014"},{"abstractinfo":"钛合金作为人体硬组织替代物和修复物的首选材料在临床上得到广泛的应用.分析了目前医用钛合金存在的主要问题:生物活性、耐磨性和耐腐蚀性有待进一步提高,指出表面改性是改善上述问题的有效途径;综述了人体植入钛合金表面改性的研究进展,并展望了钛合金表面改性的发展趋势.","authors":[{"authorName":"黄伟九","id":"fab95c14-b7d5-4aa8-a6f5-89e8da1589a9","originalAuthorName":"黄伟九"},{"authorName":"","id":"be08acfc-6f5b-4259-bd33-7ba3742c9a40","originalAuthorName":"李兆峰"}],"doi":"","fpage":"369","id":"87ac2418-f823-4ed8-aa1e-8b60eb20b8e1","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ac371fb0-6c61-497f-9867-da364d132b02","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"ba66d356-aa68-4efa-9e7f-703807691ee6","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"7fce681c-aa8e-4d8e-961f-2f8df26950e2","keyword":"生物活性","originalKeyword":"生物活性"},{"id":"8205c333-0296-41fb-b300-8e6c28669192","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"ba6569b7-cc46-451f-a733-a35147a58c79","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"cldb2006z2109","title":"医用钛合金表面改性研究进展","volume":"20","year":"2006"},{"abstractinfo":"利用微弧氧化技术,在Ti-6Al-3Nb-2Zr合金表面成功制备出纳米防污陶瓷涂层.采用扫描电镜、透射电镜和光学显微镜分析了纳米防污涂层的表面形貌、微观形态和氧化层厚度,采用X射线光电子能谱和X射线能谱仪对防污涂层的元素价态和化学组成进行了分析,采用WS-1型划痕试验机和数字万用表研究了涂层的结合强度和绝缘性,并采用TE66微磨损试验机和进行天然海水挂片试验考察了涂层的摩擦学性能和防污性能.结果表明:防污涂层厚度可达到20 μm以上,涂层有非晶和20-50 nm纳米晶TiO2及Cu2O构成,膜基结合强度达到50 MPa,涂层绝缘性和耐磨性良好,防污性能得到明显改善,挂片6个月后涂层表面仅有少量海生物附着,而裸钛合金样品挂片3个月后则完全被海生物附着.","authors":[{"authorName":"","id":"ed9424e1-0e45-4835-936d-fc5d3353f61c","originalAuthorName":"李兆峰"},{"authorName":"蒋鹏","id":"6838deb3-8989-41cb-9193-1364ce0ec9d6","originalAuthorName":"蒋鹏"},{"authorName":"张建欣","id":"17c1aea3-4bb4-4724-9bcd-2ef77e81f2f4","originalAuthorName":"张建欣"},{"authorName":"廖志谦","id":"cb239e29-0081-4f60-929d-12245a7387a7","originalAuthorName":"廖志谦"},{"authorName":"士凯","id":"4ba861ac-1950-421e-8edc-21430cb9a82c","originalAuthorName":"李士凯"}],"doi":"","fpage":"48","id":"d74ced03-0e40-406f-af72-0e2c8103f854","issue":"6","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"8fd5ab7f-0d83-474d-98fd-8be60034bead","keyword":"Ti-6Al-3Nb-2Zr合金","originalKeyword":"Ti-6Al-3Nb-2Zr合金"},{"id":"16be5fb7-ee34-4336-adf8-a2358568bcbd","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"9a67202b-affa-435a-8061-1be7d7e0b7b1","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"2369325e-a1e5-4ac1-b734-d9d8659273cb","keyword":"防污涂层","originalKeyword":"防污涂层"},{"id":"8d4efe4b-fa4f-4daa-82f2-408f754f08d9","keyword":"结合强度","originalKeyword":"结合强度"},{"id":"881209c3-4c83-4161-9887-3ec048b0dda6","keyword":"磨损","originalKeyword":"磨损"}],"language":"zh","publisherId":"clkfyyy201206012","title":"钛合金表面微弧氧化纳米防污涂层及性能研究","volume":"27","year":"2012"},{"abstractinfo":"采用磁过滤直流阴极真空弧源沉积技术在Ti6Al4V合金表面制备类金刚石多层膜,采用原子力显微镜和纳米压痕仪观测其表面形貌及硬度;采用微磨粒磨损试验机及三电极电化学测试系统考察类金刚石多层膜在模拟体液环境中的摩擦学和耐蚀性能,并与Ti6Al4V合金进行对比.结果表明:类金刚石多层膜由致密分布的纳米颗粒组成,表面粗糙度为4.86 nm,硬度和弹性模量分别为54.82和342.27 GPa;在模拟体液中类金刚石膜显著提高了Ti6Al4V合金的抗磨能力和减摩性能,其磨损率仅为Ti6Al4V合金磨损率的11.7%~22.6%.随着载荷增加,Ti6Al4V合金和类金刚石膜的腐蚀电位降低,腐蚀电流增加;类金刚石多层膜可有效提高Ti6Al4V合金的耐蚀能力.","authors":[{"authorName":"黄伟九","id":"e574bcd5-d969-48cc-ab88-3cacab4e3041","originalAuthorName":"黄伟九"},{"authorName":"","id":"bfe5c11e-0cb6-4014-badc-0d47c1090dbe","originalAuthorName":"李兆峰"},{"authorName":"王国","id":"18398e1f-0d0a-4e50-9937-4e8fcc1c1799","originalAuthorName":"王国"},{"authorName":"沟引宁","id":"03064896-15c0-47f9-95c3-06aaba1bf34f","originalAuthorName":"沟引宁"}],"doi":"","fpage":"1230","id":"d78a15c8-9885-4ee8-82f7-7933ba0ccb4a","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"81adc9bc-9c4d-474b-b1e6-ef27bf266aee","keyword":"Ti6Al4V合金","originalKeyword":"Ti6Al4V合金"},{"id":"57fd4717-4a9a-4744-a769-032a6b123e66","keyword":"类金刚石膜","originalKeyword":"类金刚石膜"},{"id":"e902cee3-dacd-4035-9462-b557e32199df","keyword":"微磨粒磨损","originalKeyword":"微磨粒磨损"},{"id":"8a8bec8d-40f3-47f6-8483-a9dc41d423c6","keyword":"模拟体液","originalKeyword":"模拟体液"},{"id":"804b3910-298d-4e7a-87e6-5b6c7cab9a2e","keyword":"摩擦学性能","originalKeyword":"摩擦学性能"},{"id":"d7fbb17f-3a5a-4146-aa1d-715ff205742f","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"xyjsclygc201007022","title":"Ti6Al4V合金表面类金刚石多层膜的耐蚀及摩擦磨损性能","volume":"39","year":"2010"},{"abstractinfo":"钛合金微弧氧化膜具有优良的综合性能,但过去的研究多针对Ti6A14V及医用纯钛,且电解液常用硅酸盐和磷酸二氢盐体系,不够全面、系统.为此,以磷酸盐溶液体系在船用TA2表面制备了陶瓷微弧涂层.采用SEM、光学显微镜、X射线衍射仪和显微硬度计对陶瓷膜的表面形貌、截面形貌、氧化层厚度、相结构和显微硬度进行了观察测试,用电子万能材料试验机和数字万用表测定了膜层的结合强度和绝缘性.并用盐雾试验机考察了涂层的耐蚀性.结果表明:随氧化时间的延长,膜层厚度不断增加,氧化60 min后膜层厚度可达到20 μm以上;陶瓷层主要由金红石TiO2相和锐钛矿TiO2相构成,膜基结合强度达到30 MPa以上,膜层绝缘性和耐蚀性良好.","authors":[{"authorName":"","id":"1384b1aa-8e21-4fd3-b62b-8b82c8ba8963","originalAuthorName":"李兆峰"},{"authorName":"张建欣","id":"e7ab5252-5369-4b83-b0ab-c6db768481e1","originalAuthorName":"张建欣"},{"authorName":"蒋鹏","id":"5b201e2b-e7e8-4755-bf8f-2ba96abe28a0","originalAuthorName":"蒋鹏"},{"authorName":"士凯","id":"e751fb37-ad4d-42c4-a7a7-16e490520edf","originalAuthorName":"李士凯"},{"authorName":"廖志谦","id":"3ef8f14b-5073-485e-b314-6f39ca934322","originalAuthorName":"廖志谦"}],"doi":"","fpage":"66","id":"da217ff6-4d64-4a94-8fa6-b9a751c2a030","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d956b731-a874-4854-8b18-a1c44b2fbc3b","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"96fe88db-b1ab-43e6-9593-a349641f2201","keyword":"船用钛材TA2","originalKeyword":"船用钛材TA2"},{"id":"5b1dd74e-b4b3-4910-b561-e218c358fe2a","keyword":"结合强度","originalKeyword":"结合强度"},{"id":"e9f89697-5228-4086-b67b-7b3448c83c07","keyword":"绝缘性","originalKeyword":"绝缘性"},{"id":"256a4c9e-ad7b-4532-8b1b-69cccae93422","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh201009022","title":"钛合金微弧氧化膜的性能探讨","volume":"43","year":"2010"},{"abstractinfo":"<正> 一、为纪念薰创办和主编《金属学报》,继承并发扬他毕生致力于科技进步的业绩,特设立《金属学报》纪念薰奖金基金.二、基金来源是乐于赞助的科研单位、高等院校、企业、团体的捐赠.基金属于专款,全部存入银行,每年支取利息,直接用于奖励.","authors":[],"categoryName":"|","doi":"","fpage":"2","id":"53b5b4af-4a26-4ab3-9944-a079f1cdb6c6","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1985_2_2","title":"《金属学报》纪念薰奖金基金简章","volume":"21","year":"1985"},{"abstractinfo":"<正> 1983年3月20日凌晨,《金属学报》的创刊人、主编薰同志和我们永别了。 薰同志1913年11月20日出生于湖南省邵阳县。1937年以优异成绩通过湖南省试,留学英国Sheffield大学,先后获得哲学博士和冶金学的科学博士学位。1950年受中国科学院郭沫若院长聘,翌年毅然回归祖国。历任中国科学院金属研究所所长,中国科学院","authors":[],"categoryName":"|","doi":"","fpage":"1","id":"e58ce4aa-af81-477f-8509-f13a621fe343","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1983_2_14","title":"深切悼念本刊创刊人、主编薰同志","volume":"19","year":"1983"}],"totalpage":663,"totalrecord":6630}